Skip to main content
Log in

Thermoelectric transport through interacting quantum dots in graphene

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We study the thermoelectric properties of an electronic localized level coupled to two graphene electrodes. Graphene band structure shows a pseudogap density of states (DOS) that strongly affects the charge transport. We focus on the Coulomb blockade regime and derive the expression for the Onsager matrix that relates the charge and heat currents to the voltage and temperature biases in the linear response regime. The elements of the Onsager matrix are functions of the transmission coefficient, which depends on the dot Green’s function. Our self-consistent calculation of the Green’s function is based on the equation-of-motion technique. We find a double-peak structure for the electric and thermal responses as the dot level is tuned with an external gate terminal, in accordance with the Coulomb blockade phenomenon. Remarkably enough, the thermal conductance is much smaller than its electric counterpart, giving rise to a high thermoelectric figure of merit for certain values of the gate voltage. Finally, we discuss a large departure from the Wiedemann–Franz law caused mainly by the pseudogap DOS in the contacts and weakly affected by interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  2. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  3. D. DiVincenzo, E.J. Mele, Phys. Rev. B 29, 1685 (1984)

    Article  ADS  Google Scholar 

  4. C.E. Nebel, Nat. Mater. 12, 690 (2013)

    Article  ADS  Google Scholar 

  5. M.B. Lundeberg, J.A. Folk, Science 346, 422 (2014)

    Article  ADS  Google Scholar 

  6. C. Stampfer, J. Güttinger, F. Molitor, D. Graf, T. Ihn, K. Ensslin, Appl. Phys. Lett. 92, 012102 (2008)

    Article  ADS  Google Scholar 

  7. C. Stampfer, E. Schurtenberger, F. Molitor, J. Guettinger, T. Ihn, K. Ensslin, Nano Lett. 8, 2378 (2008)

    Article  ADS  Google Scholar 

  8. F. Sols, F. Guinea, A.H.C. Neto, Phys. Rev. Lett. 99, 166803 (2007)

    Article  ADS  Google Scholar 

  9. R. Murali, Graphene Nanoelectronics: From Materials to Circuits (Springer-Verlag, NY, 2012)

  10. A.C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, 1993)

  11. S.M. Cronenwett, T.H. Oosterkamp, L.P. Kouwenhoven, Science 281, 540 (1998)

    Article  ADS  Google Scholar 

  12. D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magder, U. Meirav, M.A. Kastner, Nature 391, 156 (1998)

    Article  ADS  Google Scholar 

  13. M. Hentschel, F. Guinea, Phys. Rev. B 76, 115407 (2007)

    Article  ADS  Google Scholar 

  14. A.H.C. Neto, V. Kotov, J. Nilsson, V. Pereira, N.M.R. Peres, B. Uchoa, Solid State Commun. 149, 1094 (2009)

    Article  ADS  Google Scholar 

  15. B. Uchoa, L. Yang, S.W. Tsai, N.M.R. Peres, A.H.C. Neto, Phys. Rev. Lett. 103, 206804 (2009)

    Article  ADS  Google Scholar 

  16. M. Vojta, L. Fritz, R. Bulla, Europhys. Lett. 90, 27006 (2010)

    Article  ADS  Google Scholar 

  17. K.H. Ding, A.G. Zhu, J. Berakdar, Phys. Rev. B 84, 115433 (2011)

    Article  ADS  Google Scholar 

  18. K. Saha, I. Paul, K. Sengupta, Phys. Rev. B 81, 165446 (2010)

    Article  ADS  Google Scholar 

  19. S.P. Chao, V. Aji, Phys. Rev. B 83, 165449 (2011)

    Article  ADS  Google Scholar 

  20. M. Kharitonov, G. Kotliar, Phys. Rev. B 88, 201103 (2013)

    Article  ADS  Google Scholar 

  21. A.K. Mitchell, M. Vojta, R. Bulla, L. Fritz, Phys. Rev. B 88, 195119 (2013)

    Article  ADS  Google Scholar 

  22. L. Fritz, M. Vojta, Rep. Prog. Phys. 76, 032501 (2013)

    Article  ADS  Google Scholar 

  23. Y.V. Nazarov, Y.M. Blanter, Quantum Transport (Cambridge University Press, Cambridge, 2009)

  24. N.A. Zimbovskaya, M.R. Pederson, Phys. Rep. 509, 1 (2011)

    Article  ADS  Google Scholar 

  25. W. Liang, M. Bockrath, H. Park, Phys. Rev. Lett. 88, 126801 (2002)

    Article  ADS  Google Scholar 

  26. A.A. Balandin, Nat. Mater. 10, 569 (2011)

    Article  ADS  Google Scholar 

  27. Y.M. Zuev, W. Chang, P. Kim, Phys. Rev. Lett. 102, 096807 (2009)

    Article  ADS  Google Scholar 

  28. P. Wei, W. Bao, Y. Pu, C.N. Lau, J. Shi, Phys. Rev. Lett. 102, 166808 (2009)

    Article  ADS  Google Scholar 

  29. M.I. Alomar, D. Sánchez, Phys. Rev. B 89, 115422 (2014)

    Article  ADS  Google Scholar 

  30. M. Inglot, V.K. Dugaev, J. Barnaś, Phys. Rev. B 92, 085418 (2015)

    Article  ADS  Google Scholar 

  31. Y. Dubi, M.D. Ventra, Rev. Mod. Phys. 83, 131 (2011)

    Article  ADS  Google Scholar 

  32. D. Sánchez, H. Linke, New J. Phys. 16, 110201 (2014)

    Article  Google Scholar 

  33. D. Zubarev, Usp. Fiz. Nauk. 71, 71 (1960)

    Article  Google Scholar 

  34. C. Lacroix, J. Phys. F 11, 2389 (1981)

    Article  ADS  Google Scholar 

  35. Y. Meir, N.S. Wingreen, P.A. Lee, Phys. Rev. Lett. 70, 2601 (1993)

    Article  ADS  Google Scholar 

  36. V. Kashcheyevs, A. Aharony, O. Entin-Wohlman, Phys. Rev. B 73, 125338 (2006)

    Article  ADS  Google Scholar 

  37. T. Aono, J. Phys. Soc. Jpn. 82, 083703 (2013)

    Article  ADS  Google Scholar 

  38. Z.-G. Zhu, K.-H. Ding, J. Berakdar, Europhys. Lett. 90, 67001 (2010)

    Article  ADS  Google Scholar 

  39. L. Onsager, Phys. Rev. 37, 405 (1931)

    Article  ADS  Google Scholar 

  40. G.D. Mahan, Many-Particle Physics, 3rd edn. (Springer, NY, 2007)

  41. P.N. Butcher, J. Phys.: Condens Matter 2, 4869 (1990)

    ADS  Google Scholar 

  42. J. Matthews, D. Sánchez, M. Larsson, H. Linke, Phys. Rev. B 85, 205309 (2012)

    Article  ADS  Google Scholar 

  43. H. Sevincli, C. Sevik, T. Cağin, G. Cuniberti, Sci. Rep. 3, 035405 (2011)

    Google Scholar 

  44. B. Kubala, J. König, J. Pekola, Phys. Rev. Lett. 100, 066801 (2008)

    Article  ADS  Google Scholar 

  45. M. Eich, F. Herman, R. Pisoni, H. Overweg, Y. Lee, P. Rickhaus, K. Watanabe, T. Taniguchi, M. Sigrist, T. Ihn, K. Ensslin, Phys. Rev. X 8, 031023 (2018)

    Google Scholar 

  46. D. Sánchez, R. López, C.R. Physique 17, 1060 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Sánchez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isern-Lozano, J.R., Lim, J.S., Grosu, I. et al. Thermoelectric transport through interacting quantum dots in graphene. Eur. Phys. J. Spec. Top. 227, 1969–1979 (2019). https://doi.org/10.1140/epjst/e2018-800064-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2018-800064-8

Navigation