Skip to main content
Log in

Fronts described by the Kuramoto–Sivashinsky equation under surface tension driven flow

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We study chemical reaction fronts described by the Kuramoto–Sivashinsky equation coupled to surface tension driven flow. We consider the front as a thin interface separating reacted from unreacted fluids inside a two-dimensional fluid layer. The top surface of the layer is open to the atmosphere. Fluid motion is caused by surface tension gradients across the reaction front. We use the equations describing Stokes flow to model the fluid motion inside the fluid layer. We apply a linear stability analysis to determine the stability of the steady front solutions. We find that initially unstable fronts can become stable due to fluid motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Rongy, A. De Wit, J. Chem. Phys. 124, 164705 (2006)

    Article  ADS  Google Scholar 

  2. L. Rongy, A. De Wit, J. Eng. Math. 59, 221 (2007)

    Article  Google Scholar 

  3. É. Pópity-Tóth, G. Pótári, I. Erdős, D. Horváth, Á. Tóth, J. Chem. Phys. 141, 044719 (2014)

    Article  ADS  Google Scholar 

  4. É. Pópity-Tóth, V. Pimienta, D. Horváth, Á. Tóth, J. Chem. Phys. 139, 164707 (2013)

    Article  ADS  Google Scholar 

  5. H. Miike, H. Yamamoto, S. Kai, S.C. Müller, Phys. Rev. E 48, R1627(R) (1993)

    Article  ADS  Google Scholar 

  6. J.J. Tyson, J.P. Keener, Physica D 32, 327 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  7. Y. Kuramoto, T. Tsuzuki, Prog. Theor. Phys. 55, 356 (1976)

    Article  ADS  Google Scholar 

  8. G.I. Sivashinsky, Acta Astronautica 4, 1177 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  9. D. Horváth, V. Petrov, S.K. Scott, K. Showalter, J. Chem. Phys. 98, 6332 (1993)

    Article  ADS  Google Scholar 

  10. A. Malevanets, A. Careta, R. Kapral, Phys. Rev. E 52, 4724 (1995)

    Article  ADS  Google Scholar 

  11. D. Elliott, D.A. Vasquez, Phys. Rev. E 85, 016207 (2012)

    Article  ADS  Google Scholar 

  12. D. Horváth, K. Showalter, J. Chem. Phys. 102, 2471 (1995)

    Article  ADS  Google Scholar 

  13. M.P.M.A. Baroni, E. Gu’ron, A. De Wit, Chaos 22, 013134 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  14. S.N. Gomes, M. Pradas, S. Kalliadasis, D.T. Papageorgiou, G.A. Pavliotis, Phys. Rev. E 92, 022912 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  15. P.M. Vilela, D.A. Vasquez, Eur. Phys. J. Special Topics 225, 2563 (2016)

    Article  ADS  Google Scholar 

  16. Stephen B. Margolis, G.I. Sivashinsky, SIAM J. Appl. Math. 44, 344 (1984)

    Article  MathSciNet  Google Scholar 

  17. R. Guzman, D.A. Vasquez, Eur. Phys. J. Special Topics 225, 2573 (2017)

    Article  ADS  Google Scholar 

  18. S.S. Shy, P.D. Ronney, S.G. Buckley, V. Yakhot, in24th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1993, p. 543

  19. D.A. Vasquez, D.I. Coroian, Chaos 20, 033109 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  20. L.D. Landau, E.M. Lifshitz,Fluid Mechanics (Pergamon Press, 1987)

  21. W. Press, S. Teukolsky, W. Vetterling, B. Flannery,Numerical Recipes, 3rd edn. (Cambridge University Press, Cambridge, 2007)

  22. P.M. Vilela, D.A. Vasquez, Phys. Rev. E 86, 066102 (2012)

    Article  ADS  Google Scholar 

  23. P.M. Vilela, D.A. Vasquez, Chaos 24, 023135 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  24. B.T. Smith, J.M. Boyle, J.J. Dongarra, B.S. Garbow, Y. Ikebe, V.C. Klema, C.B. Moler,Matrix Eigensystem Routines-EISPACK Guide, 2nd edn. (Springer-Verlag, Berlin, 1976)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzman, R., Vilela, P.M. & Vasquez, D.A. Fronts described by the Kuramoto–Sivashinsky equation under surface tension driven flow. Eur. Phys. J. Spec. Top. 227, 521–531 (2018). https://doi.org/10.1140/epjst/e2018-00126-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2018-00126-y

Navigation