Skip to main content
Log in

Acceleration of chemical reaction fronts

I. Surface tension-driven convection

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Chemical fronts and waves travelling in reaction-diffusion systems frequently induce hydrodynamic flow. This adds an additional transport process to the mechanism of spatio-temporal structure formation and can lead to an acceleration of the chemical (reaction) front. We report on the acceleration of travelling chemical fronts elicited by convection, as caused by the Marangoni effect in the monostable iodate-arsenous acid reaction in a thin liquid film. At a stoichiometric excess of iodate over arsenous acid, the reaction produces a large amount of iodine, which is surface-active. At the reaction front, iodine is transferred from the bulk to the surface inducing spatio-temporal gradients of surface tension that lead to capillary flows. These flows, in turn, promote further iodine adsorption at the surface through hydrodynamic mixing effects. As a consequence, an acceleration of the chemical fronts is observed, even if the concentration difference across the front is constant. After the transient acceleration of the reaction front, it settles at a constant propagation velocity, which is assumed to be regulated by a balance in the mass transfer between the bulk and the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Böckmann, S.C. Müller, Phys. Rev. E 70, 046302 (2004)

    Article  ADS  Google Scholar 

  2. D. Horváth, T. Jr. Bánsági, Á. Tóth, J. Chem. Phys. 117, 4399 (2002)

    Article  ADS  Google Scholar 

  3. A. De Wit, Phys. Fluids 16, 163 (2004)

    Article  ADS  Google Scholar 

  4. A. De Wit, Phys. Rev. Lett. 87, 054502 (2001)

    Article  ADS  Google Scholar 

  5. K. Eckert, A. Grahn, Phys. Rev. Lett. 82, 4436 (1999)

    Article  ADS  Google Scholar 

  6. Y. Shi, K. Eckert, Chem. Eng. Sci. 61, 5523 (2006)

    Article  Google Scholar 

  7. I. Bou Malham, N. Jarrige, J. Martin, N. Rakotomalala, L. Talon, D. Salin, J. Chem. Phys. 133, 244505 (2010)

    Article  ADS  Google Scholar 

  8. R. Kapral, K. Showalter,Chemical Waves and Patterns (Kluwer Academic Press, Dordrecht, 1995)

  9. I.R. Epstein, J.A. Pojman,An Introduction to Nonlinear Chemical Dynamics (Oxford University Press, New York, 1998)

  10. J.A. Pojman, I.R. Epstein, T.J. McManus, K. Showalter, J. Phys. Chem. 95, 1299 (1991)

    Article  Google Scholar 

  11. D.A. Vasquez, J.M. Littley, J.W. Wilder, B.F. Edwards, Phys. Rev. E 50, 280 (1994)

    Article  ADS  Google Scholar 

  12. Y. Wu, D.A. Vasquez, B.F. Edwards, J.W. Wilder, Phys. Rev. E 51, 1119 (1995)

    Article  ADS  Google Scholar 

  13. D. Horváth, M.A. Budroni, P. Bába, L. Rongy, A. De Wit, K. Eckert, M.J.B. Hauser, Á Tóth, Phys. Chem. Chem. Phys. 16, 26279 (2014)

    Article  Google Scholar 

  14. S.C. Müller, T. Plesser, B. Hess, Ber. Bunsenges. Phys. Chem. 89, 654 (1985)

    Article  Google Scholar 

  15. M.A. Bees, A.J. Pons, P.G. Sørensen, F. Sagués, J. Chem. Phys. 114, 1932 (2001)

    Google Scholar 

  16. H. Miike, S.C. Müller, B. Hess, Phys. Rev. Lett. 61, 2109 (1988)

    Article  ADS  Google Scholar 

  17. K. Matthiessen, H. Wilke, S.C. Müller, Phys. Rev. E 53, 6056 (1996)

    Article  ADS  Google Scholar 

  18. M. Diewald, K. Matthiessen, S. C. Müller, H.R. Brand, Phys. Rev. Lett. 77, 4466 (1996)

    Article  ADS  Google Scholar 

  19. M.J.B. Hauser, R.H. Simoyi, Phys. Lett. A 191, 31 (1994)

    Article  ADS  Google Scholar 

  20. M.J.B. Hauser, R.H. Simoyi, Chem. Phys. Lett. 227, 593 (1994)

    Article  ADS  Google Scholar 

  21. B. Matincigh, M.J.B. Hauser, R. Simoyi, Phys. Rev. E 52, 6146 (1995)

    Article  ADS  Google Scholar 

  22. K. Yoshikawa, T. Kusumi, M. Ukitsu, S. Nakata, Chem. Phys. Lett. 211, 211 (1993)

    Article  ADS  Google Scholar 

  23. L. Rongy, A. De Wit, J. Chem. Phys. 124, 164705 (2006)

    Article  ADS  Google Scholar 

  24. L. Rongy, A. De Wit, Phys. Rev. E 77, 046310 (2008)

    Article  ADS  Google Scholar 

  25. L. Rongy, A. De Wit, G.M. Homsy, Phys. Fluids 20, 072103 (2008)

    Article  ADS  Google Scholar 

  26. L. Šebestíková, M.J.B. Hauser, Phys. Rev. E 85, 036303 (2012)

    Article  ADS  Google Scholar 

  27. L. Šebestíková, Phys. Rev. E 88, 033023 (2013)

    Article  ADS  Google Scholar 

  28. L. Rongy, P. Assemat, A. De Wit, Chaos 22, 037106 (2012)

    Article  ADS  Google Scholar 

  29. M.A. Budroni, L. Rongy, A. De Wit, Phys. Chem. Chem. Phys. 14, 14619 (2012)

    Article  Google Scholar 

  30. É. Pópity-Tóth, V. Pimienta, D. Horváth, Á. Tóth, J. Chem. Phys. 139, 164707 (2013)

    Article  ADS  Google Scholar 

  31. É. Pópity-Tóth, G. Pótári, I. Erdös , D. Horváth, Á. Tóth, J. Chem. Phys. 141, 044719 (2014)

    Article  ADS  Google Scholar 

  32. R. Guzman, D.A. Vasquez, Eur. Phys. J. Special Topics 225, 2573 (2016)

    Article  ADS  Google Scholar 

  33. R. Tiani, L. Rongy, J. Chem. Phys. 145, 124701 (2016)

    Article  ADS  Google Scholar 

  34. P. Bába, L. Rongy, A. De Wit, M.J.B. Hauser, Á. Tóth, D. Horváth, Phys. Rev. Lett. 121, 024501 (2018)

    Article  ADS  Google Scholar 

  35. J.R.A. Pearson, J. Fluid Mech. 4, 489 (1958)

    Article  ADS  Google Scholar 

  36. H.R. Brand, S.C. Müller, inEvolution of spontaneous structures in dissipative continuous systems, edited by F.H. Busse, S.C. Müller (Springer, Berlin, 1998), Vol. 411

  37. O. Inomoto, M.J.B. Hauser, R. Kobayashi, S.C. Müller, Eur. Phys. J. Special Topics 227, 509 (2018)

    Article  ADS  Google Scholar 

  38. C. Normand, Y. Pomeau, M.G. Velarde, Rev. Mod. Phys. 49, 581 (1977)

    Article  ADS  Google Scholar 

  39. T.A. Gribschaw, K. Showalter, D.L. Banville, I.R. Epstein, J. Phys. Chem. 85, 2152 (1981)

    Article  Google Scholar 

  40. A. Hanna, A. Saul, K. Showalter, J. Am. Chem. Soc. 104, 3838 (1982)

    Article  Google Scholar 

  41. J. Masere, D.A. Vasquez, B.F. Edwards, J.W. Wilder, K. Showalter, J. Phys. Chem. 98, 6505 (1994)

    Article  Google Scholar 

  42. J.H. Merkin, H. Ševčíková, Phys. Chem. Chem. Phys. 1, 91 (1999)

    Article  Google Scholar 

  43. D.M. Weitz, I.R. Epstein, J. Phys. Chem. 88, 5300 (1984)

    Article  Google Scholar 

  44. G. Bazsa, I.R. Epstein, J. Phys. Chem. 89, 3050 (1985)

    Article  Google Scholar 

  45. S. Kai,Pattern formation in complex dissipative systems (World Scientific, Singapore, 1992)

  46. H. Miike, H. Yamamoto, S. Kai, S.C. Müller, Phys. Rev. E 48, 1627 (1993)

    Article  ADS  Google Scholar 

  47. S. Kai, H. Miike, Physica A 204, 346 (1994)

    Article  ADS  Google Scholar 

  48. O. Inomoto, T. Ariyoshi, S. Inanaga, S. Kai, Int. J. Bifurc. Chaos 7, 989 (1997)

    Article  Google Scholar 

  49. O. Inomoto, K. Abe, T. Amemiya, T. Yamaguchi, S. Kai, Phys. Rev. E 61, 5326 (2000)

    Article  ADS  Google Scholar 

  50. G. Flätgen, K. Krischer, Phys. Rev. E 51, 3997 (1995)

    Article  ADS  Google Scholar 

  51. T.J. McManus, Ph.D. thesis, West Virginia University, Morgantown, WV, USA, 1989

  52. K. Showalter, in Kinetics of Nonhomogeneous Processes, edited by G.R. Freeman (Wiley, New York, 1987)

  53. Y. Nakashima, Clays Clay Miner. 50, 1 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus J. B. Hauser.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inomoto, O., Müller, S.C., Kobayashi, R. et al. Acceleration of chemical reaction fronts. Eur. Phys. J. Spec. Top. 227, 493–507 (2018). https://doi.org/10.1140/epjst/e2018-00074-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2018-00074-6

Navigation