Skip to main content
Log in

Driven granular fluids

Glass transition and microrheology

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Dense granular media can be prepared in a stationary state by suitable driving. Such driving can be given by a random, momentum-conserving external force acting upon, say, a fluid comprised of inelastic hard spheres. While this out-of-equilibrium stationary state violates time reversal symmetry, it can still be investigated by means similar to ordinary fluids. For high enough density, the driven granular fluid undergoes a glass transition, and for this transition an extension to the mode-coupling theory can be derived. In addition to the quiescent stationary state, a kinetic theory as well as experiments in 2D for the active microrheology can be devised, where a selected intruder is pulled through the system as a probe for either constant velocity or force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.L. Greer, Metallic Glasses, Science 267, 1947 (1995)

    Article  ADS  Google Scholar 

  2. W. van Megen, Crystallisation and the glass transition in suspensions of hard colloidal spheres, Transp. Theory Stat. Phys. 24, 1017 (1995)

    Article  ADS  Google Scholar 

  3. R. Höhler, S. Cohen-Addad, Rheology of liquid foam, J. Phys.: Condens. Matter 17, R1041 (2005)

    ADS  Google Scholar 

  4. G. Marty, O. Dauchot, Subdiffusion and cage effect in a sheared granular material, Phys. Rev. Lett. 94, 015701 (2005)

    Article  ADS  Google Scholar 

  5. A.R. Abate, D.J. Durian, Approach to jamming in an air-fluidized granular bed, Phys. Rev. E 74, 031308 (2006)

    Article  ADS  Google Scholar 

  6. D.I. Goldman, H.L. Swinney, Signatures of glass formation in a fluidized bed of hard spheres, Phys. Rev. Lett. 96, 145702 (2006)

    Article  ADS  Google Scholar 

  7. P.M. Reis, R.A. Ingale, M.D. Shattuck, Caging dynamics in a granular fluid, Phys. Rev. Lett. 98, 188301 (2007)

    Article  ADS  Google Scholar 

  8. A.S. Keys, A.R. Abate, S.C. Glotzer, D.J. Durian, Measurement of growing dynamical length scales and prediction of the jamming transition in a granular material, Nat. Phys. 3, 260 (2007)

    Article  Google Scholar 

  9. R. Candelier, O. Dauchot, G. Biroli, Building blocks of dynamical heterogeneities in dense granular media, Phys. Rev. Lett. 102, 088001 (2009)

    Article  ADS  Google Scholar 

  10. K. Avila, H. Castillo, A. Fiege, K. Vollmayr-Lee, A. Zippelius, Strong dynamical heterogeneity and universal scaling in driven granular fluids, Phys. Rev. Lett. 113, 025701 (2014)

    Article  ADS  Google Scholar 

  11. H. Mizuno, L.E. Silbert, M. Sperl, Spatial distributions of local elastic moduli near the jamming transition, Phys. Rev. Lett. 116, 068302 (2016)

    Article  ADS  Google Scholar 

  12. U. Bengtzelius, W. Götze, A. Sjölander, Dynamics of supercooled liquids and the glass transition, J. Phys. C 17, 5915 (1984)

    Article  ADS  Google Scholar 

  13. W. Götze, Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory (Oxford University Press, USA, 2009)

  14. W.T. Kranz, M. Sperl, A. Zippelius, Glass transition for driven granular fluids, Phys. Rev. Lett. 104, 225701 (2010)

    Article  ADS  Google Scholar 

  15. M. Sperl, W.T. Kranz, A. Zippelius, Single-particle dynamics in dense granular fluids under driving, EPL 98, 28001 (2012)

    Article  ADS  Google Scholar 

  16. T. Kranz, M. Sperl, A. Zippelius. Glass transition in driven granular fluids: A mode-coupling approach, Phys. Rev. E 87, 022207 (2013)

    Article  ADS  Google Scholar 

  17. T. Franosch, M. Fuchs, W. Götze, M.R. Mayr, A.P. Singh, Asymptotic laws and preasymptotic correction formulas for the relaxation near glass-transition singularities, Phys. Rev. E 55, 7153 (1997)

    Article  ADS  Google Scholar 

  18. W. van Megen, T.C. Mortensen, S.R. Williams, J. Müller, Measurement of the self-intermediate scattering function of suspensions of hard spherical particles near the glass transition, Phys. Rev. E 58, 6073 (1998)

    Article  ADS  Google Scholar 

  19. M. Sperl, Nearly-logarithmic decay in the colloidal hard-sphere system, Phys. Rev. E 71, 060401 (2005)

    Article  ADS  Google Scholar 

  20. J. Bergenholtz, M. Fuchs, Non-ergodicity transitions in colloidal suspensions with attractive interactions Phys. Rev. E 59, 5706 (1999)

    Article  ADS  Google Scholar 

  21. K. Dawson, G. Foffi, M. Fuchs, W. Götze, F. Sciortino, M. Sperl, P. Tartaglia, Th. Voigtmann, E. Zaccarelli, Higher-order glass-transition singularities in colloidal systems with attractive interactions, Phys. Rev. E 63, 011401 (2001)

    Article  ADS  Google Scholar 

  22. K.N. Pham, A.M. Puertas, J. Bergenholtz, S.U. Egelhaaf, A. Moussaïd, P.N. Pusey, A.B. Schofield, M.E. Cates, M. Fuchs, W.C.K. Poon, Multiple glassy states in a simple model system, Science 296, 104 (2002)

    Article  ADS  Google Scholar 

  23. K.N. Pham, S.U. Egelhaaf, P.N. Pusey, W.C.K. Poon, Glasses in hard spheres with short-range attraction, Phys. Rev. E 69, 011503 (2004)

    Article  ADS  Google Scholar 

  24. M. Bayer, J.M. Brader, F. Ebert, M. Fuchs, E. Lange, G. Maret, R. Schilling, M. Sperl, J.P. Wittmer, Dynamic glass transition in two dimensions, Phys. Rev. E 76, 11508 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  25. A.R. Abate, D.J. Durian, Topological persistence and dynamical heterogeneities near jamming, Phys. Rev. E 76, 021306 (2007)

    Article  ADS  Google Scholar 

  26. A.J. Liu, S.R. Nagel, Jamming is not just cool any more, Nature 396, 21 (1998)

    Article  ADS  Google Scholar 

  27. C.S. O’Hern, L.E. Silbert, A.J. Liu, S.R. Nagel, Jamming at zero temperature and zero applied stress: The epitome of disorder, Phys. Rev. E 68, 011306 (2003)

    Article  ADS  Google Scholar 

  28. A. Ikeda, L. Berthier, P. Sollich, Unified study of glass and jamming rheology in soft particle systems, Phys. Rev. Lett. 109, 018301 (2012)

    Article  ADS  Google Scholar 

  29. P. Olsson, S. Teitel, A thermal jamming versus thermalized glassiness in sheared frictionless particles, Phys. Rev E 88, R010301 (2013)

    Article  ADS  Google Scholar 

  30. M. Fuchs, M.E. Cates, Theory of nonlinear rheology and yielding of dense colloidal suspensions, Phys. Rev. Lett. 89, 248304 (2002)

    Article  ADS  Google Scholar 

  31. Y. Takehara, S. Fujimoto, K. Okumura, High-velocity drag friction in dense granular media, Europhys. Lett. 92, 44003 (2010)

    Article  ADS  Google Scholar 

  32. A. Fiege, M. Grob, A. Zippelius, Dynamics of an intruder in dense granular fluids, Granular Matt. 14, 247 (2012)

    Article  Google Scholar 

  33. T. Wang, M. Grob, A. Zippelius, M. Sperl, Active microrheology of driven granular particles, Phys. Rev. E 89, 042209 (2014)

    Article  ADS  Google Scholar 

  34. P.K. Haff, Grain flow as a fluid-mechanical phenomenon, J. Fluid Mech. 134, 401 (1983)

    Article  ADS  MATH  Google Scholar 

  35. N.V. Brilliantov, T. Pöschel, N. Brilliantov, Kinetic Theory of Granular Gases, (Clarendon Press Oxford, 2003)

  36. J.-P. Hansen, I.R. McDonald, Theory of Simple Liquids 3rd edn. (Academic Press, 2006)

  37. M. Baus, J.L. Colot, Thermodynamics and structure of hard rods, disks, spheres, or hyperspheres virial from rescaled virial expansions, Phys. Rev. A 36, 3912 (1987)

    Article  ADS  Google Scholar 

  38. N. Brilliantov, T. Poeschel, T. Kranz, A. Zippelius, Translations and rotations are correlated in granular gases, Phys. Rev. Lett. 98, 128001 (2007)

    Article  ADS  Google Scholar 

  39. T. Franosch, M. Fuchs, W. Götze, M.R. Mayr, A.P. Singh, Asymptotic laws and preasymptotic correction formulas for the relaxation near glass-transition singularities, Phys. Rev. E 55, 7153 (1997)

    Article  ADS  Google Scholar 

  40. T. Gleim, W. Kob, K. Binder, How does the relaxation of a supercooled liquid depend on its microscopic dynamics?, Phys. Rev. Lett. 81, 4404 (1998)

    Article  ADS  Google Scholar 

  41. A. Yazdi, M. Sperl, Glassy dynamics of brownian particles with velocity-dependent friction, Phys. Rev. E 94, 032602 (2016)

    Article  ADS  Google Scholar 

  42. I. Gholami, A. Fiege, A. Zippelius, Slow dynamics and precursors of the glass transition in granular fluids, Phys. Rev. E 84, 031305 (2011)

    Article  ADS  Google Scholar 

  43. T.M. Squires, T.G. Mason, Fluid mechanics of microrheology, Ann. Rev. Fluid Mech. 42, 413 (2010)

    Article  ADS  Google Scholar 

  44. A. Habdas, D. Schaar, A. Levitt, E. Weeks, Forced motion of a probe particle near the colloidal glass transition, Europhys. Lett. 67, 477 (2004)

    Article  ADS  Google Scholar 

  45. I. Gazuz, A.M. Puertas, Th Voigtmann, M. Fuchs, Active and nonlinear microrheology in dense colloidal suspensions, Phys. Rev. Lett. 102, 248302 (2009)

    Article  ADS  Google Scholar 

  46. I. Gazuz, M. Fuchs, Nonlinear microrheology of dense colloidal suspensions: A mode-coupling theory, Phys. Rev. E 87, 032304 (2013)

    Article  ADS  Google Scholar 

  47. T. Wang, M. Sperl, Thinning and thickening in active microrheology, Phys. Rev. E 93, 22606 (2016)

    Article  ADS  Google Scholar 

  48. S. Pitikaris, Local mechanical properties of granular media, PhD Thesis, Universität zu Köln, 2017

  49. A. Seguin, Y. Bertho, P. Gondret, J. Crassous, Sphere penetration by impact in a granular medium: A collisional process, Europhys. Lett. 88, 44002 (2009)

    Article  ADS  Google Scholar 

  50. A. Seguin, A. Lefebvre-Lepot, S. Faure, P. Gondret, Clustering and flow around a sphere moving into a grain cloud, Eur. Phys. J. E 39, 63 (2016)

    Article  Google Scholar 

  51. X. Cheng, J.H. McCoy, J.N. Israelachvili, I. Cohen, Imaging the microscopic structure of shear thinning and thickening colloidal suspensions, Science 333, 1276 (2011)

    Article  ADS  Google Scholar 

  52. W. Götze, Some aspects of phase transitions described by the self consistent current relaxation theory, Z. Phys. B 56, 139 (1984)

    Article  ADS  Google Scholar 

  53. L. Sjögren, Diffusion of impurities in a dense fluid near the glass transition, Phys. Rev. A 33, 1254 (1986)

    Article  ADS  Google Scholar 

  54. V. Krakoviack, C. Alba-Simionesco, M. Krauzman, Study of the depolarized light scattering spectra of supercooled liquids by a simple mode-coupling model, J. Chem. Phys. 107, 3417 (1997)

    Article  ADS  Google Scholar 

  55. A.P. Singh, G. Li, W. Götze, M. Fuchs, T. Franosch, H.Z. Cummins, Structural relaxation in orthoterphenyl: A schematic mode-coupling-theory model analysis, J. Non-Cryst. Solids 235, 66 (1998)

    Article  ADS  Google Scholar 

  56. B. Rufflé, C. Ecolivet, B. Toudic. Dynamics in the supercooled liquid na0.5li0.5po3: A schematic mode coupling mode analysis, Europhys. Lett. 45, 591 (1999)

    Article  ADS  Google Scholar 

  57. W. Götze, Th. Voigtmann, Universal and nonuniversal features of glassy relaxation in propylene carbonate, Phys. Rev. E 61, 4133 (2000)

    Article  ADS  Google Scholar 

  58. V. Krakoviack, C. Alba-Simionesco, What can be learned from the schematic mode-coupling approach to experimental data? J. Chem. Phys. 117, 2161 (2002)

    Article  ADS  Google Scholar 

  59. A. Brodin, M. Frank, S. Wiebel, G. Shen, J. Wuttke, H.Z. Cummins, Brillouin-scattering study of propylene carbonate: An evaluation of phenomenological and mode coupling analyses, Phys. Rev. E 65, 051503 (2002)

    Article  ADS  Google Scholar 

  60. S. Wiebel, J. Wuttke, Structural relaxation and mode coupling in a non-glassforming liquid: Depolarized light scattering in benzene, New J. Phys. 4, 56 (2002)

    Article  ADS  Google Scholar 

  61. W. Götze and M. Sperl, Nearly-logarithmic decay of correlations in glass-forming liquids, Phys. Rev. Lett. 92, 105701 (2004)

    Article  ADS  Google Scholar 

  62. M. Sperl, Cole-cole law for critical dynamics in glass-forming liquids, Phys. Rev. E 74, 011503 (2006)

    Article  ADS  Google Scholar 

  63. M. Sperl, Asymptotic description of schematic models for ckn, J. Non-Cryst. Solids 352, 4851 (2006)

    Article  ADS  Google Scholar 

  64. Elmar Stärk, Dynamics of granular matter in two dimensions, PhD Thesis, Heinrich-Heine-Universität Düsseldorf, 2012

  65. R. Candelier, O. Dauchot, Creep motion of an intruder within a granular glass close to jamming, Phys. Rev. Lett. 103, 128001 (2009)

    Article  ADS  Google Scholar 

  66. T. Wang, Nonlinear response in active microrheology, PhD Thesis, Heinrich-Heine-Universität Düsseldorf, 2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Sperl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sperl, M., Zippelius, A. Driven granular fluids. Eur. Phys. J. Spec. Top. 226, 3079–3094 (2017). https://doi.org/10.1140/epjst/e2017-70082-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2017-70082-8

Navigation