The European Physical Journal Special Topics

, Volume 225, Issue 8–9, pp 1785–1803 | Cite as

Process-directed self-assembly of multiblock copolymers: Solvent casting vs spray coating

Regular Article Specific Models to Tackle Fundamental Questions
Part of the following topical collections:
  1. Modern Simulation Approaches in Soft Matter Science: From Fundamental Understanding to Industrial Applications

Abstract

Using computer simulation of a soft, coarse-grained model and self-consistent field theory we investigate how collapsed, globular chain conformations in the initial stages of structure formation, which are produced by spray-coating, affect the single-chain structure and morphology of microphase-separated multiblock copolymers. Comparing spray-coated films with films that start from a disordered state of Gaussian chains, we observe that the collapsed molecular conformations in the initial stage give rise to (1) a smaller fraction of blocks that straddle domains (bridges), (2) a significant reduction of the molecular extension normal to the internal interfaces, and (3) a slightly larger lamellar domain spacing in the final morphology. The relaxation of molecular conformations towards equilibrium is very protracted for both processes – solvent casting and spray coating. These findings illustrate that the process conditions of the copolymer materials may significantly affect materials properties (such as mechanical properties) because the system does not reach thermal equilibrium on the relevant time scales.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.W. Matsen, M. Schick, Macromolecules 27, 7157 (1994)ADSCrossRefGoogle Scholar
  2. 2.
    M.W. Matsen, J. Chem. Phys. 102, 3884 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    K.D. Rasmussen, E.M. Kober, T. Lookman, A. Saxena, J. Polym. Sci. B: Polym. Phys. 41, 104 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    L. Leibler, Macromolecules 13, 1602 (1980)ADSCrossRefGoogle Scholar
  5. 5.
    P.E. Rouse, J. Chem. Phys. 21, 1272 (1953)ADSCrossRefGoogle Scholar
  6. 6.
    M. Müller, K.C. Daoulas, Phys. Rev. Lett. 107, 227801 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    J.L. Barrat, G.H. Fredrickson, Macromolecules 24, 6378 (1991)ADSCrossRefGoogle Scholar
  8. 8.
    M. Müller, K.C. Daoulas, J. Chem. Phys. 129, 164906 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    M. Müller, J. Tang, Phys. Rev. Lett. 115, 228301 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    M. Müller, D.W. Sun, Phys. Rev. Lett. 111, 267801 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    M. Tsige, T.R. Mattsson, G.S. Grest, Macromolecules 37(24), 9132 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    S.M. Hur, G. Khaira, A. Ramirez-Hernandez, M. Müller, P. Nealey, J.J. de Pablo, ACS Macro Letters 4, 11 (2015)CrossRefGoogle Scholar
  13. 13.
    T. Vettorel, K. Kremer, Macromol. Theory Simul. 19, 44 (2010)CrossRefGoogle Scholar
  14. 14.
    M.D. Dimitriou, H.S. Sundaram, Y. Cho, M.Y. Paik, M. Kondo, K. Schmidt, D.A. Fischer, C.K. Ober, E.J. Kramer, Polymer 53, 1321 (2012)CrossRefGoogle Scholar
  15. 15.
    E. Helfand, J. Chem. Phys. 62, 999 (1975)ADSCrossRefGoogle Scholar
  16. 16.
    J.M.H.M. Scheutjens, G.J. Fleer, J. Phys. Chem. 83, 1619 (1979)CrossRefGoogle Scholar
  17. 17.
    K.M. Hong, J. Noolandi, Macromolecules 14, 727 (1981)ADSCrossRefGoogle Scholar
  18. 18.
    M.W. Matsen, M. Schick, Phys. Rev. Lett. 72, 2660 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    G.H. Fredrickson, The Equilibrium Theory of Inhomogeneous Polymers (Clarendon Press, Oxford, 2006)Google Scholar
  20. 20.
    M. Müller, F. Schmid, Adv. Polym. Sci. 185, 1 (2005)CrossRefGoogle Scholar
  21. 21.
    M. Müller, G.D. Smith, J. Polym. Sci. B: Polym. Phys. 43, 934 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    K.C. Daoulas, M. Müller, J. Chem. Phys. 125, 184904 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    M. Müller, K.C. Daoulas, J. Chem. Phys. 128, 024903 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    D.Q. Pike, F.A. Detcheverry, M. Müller, J.J. de Pablo, J. Chem. Phys. 131, 084903 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    M. Müller, J. Stat. Phys. 145, 967 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    U. Nagpal, M. Müller, P.F. Nealey, J.J. de Pablo, ACS Macro Letters 1, 418 (2012)CrossRefGoogle Scholar
  27. 27.
    S. Ji, U. Nagpal, G. Liu, S.P. Delcambre, M. Müller, J.J. de Pablo, P.F. Nealey, ACS Nano 6, 5440 (2012)CrossRefGoogle Scholar
  28. 28.
    E.B. Zhulina, T.M. Birshtein, O.V. Borisov, Macromolecules 28, 1491 (1995)ADSCrossRefGoogle Scholar
  29. 29.
    M.H. Müser, M. Müller, J. Chem. Phys. 142, 174105 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    K.C. Daoulas, M. Müller, J.J. de Pablo, P.F. Nealey, G.D. Smith, Soft Matter 2, 573 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    K.C. Daoulas, M. Müller, M.P. Stoykovich, Y.J. Papakonstantopoulos, J.J. de Pablo, P.F. Nealey, S.M. Park, H.H. Solak, J. Polym. Sci. B: Polym. Phys. 44, 2589 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    M. Tuckerman, B. Berne, G. Martyna, J. Chem. Phys. 97, 1990 (1992)ADSCrossRefGoogle Scholar
  33. 33.
    P.J. Rossky, J.D. Doll, H.L. Friedman, J. Chem. Phys. 69, 4628 (1978)ADSCrossRefGoogle Scholar
  34. 34.
    M. Müller, C. Pastorino, Europhys. Lett. 81, 28002 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    M. Müller, K.C. Daoulas, J. Chem. Phys. 129, 164906 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    M.W. Matsen, J. Phys.: Condens. Matter 14, R21 (2002)ADSGoogle Scholar
  37. 37.
    K. Rasmussen, G. Kalosakas, J. Polym. Sci. B: Polym. Phys. 40, 1777 (2002)ADSCrossRefGoogle Scholar
  38. 38.
    M.W. Matsen, R.B. Thompson, J. Chem. Phys. 111, 7139 (1999)ADSCrossRefGoogle Scholar
  39. 39.
    C.A. Tyler, D.C. Morse, Macromolecules 36, 8184 (2003)ADSCrossRefGoogle Scholar
  40. 40.
    W.H. Li, P.F. Nealey, J.J. de Pablo, M. Müller, Phys. Rev. Lett. 113, 168301 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    W.H. Li, M. Müller, Annu. Rev. Chem. Biomol. Eng. 6, 187 (2015)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  1. 1.Institut für Theoretische Physik, Georg-August-UniversitätGöttingenGermany

Personalised recommendations