The European Physical Journal Special Topics

, Volume 225, Issue 8–9, pp 1673–1682 | Cite as

Switch-like surface binding of competing multivalent particles

  • N.B. Tito
  • D. Frenkel
Open Access
Regular Article Specific Models to Tackle Fundamental Questions
Part of the following topical collections:
  1. Modern Simulation Approaches in Soft Matter Science: From Fundamental Understanding to Industrial Applications


Multivalent particles competing for binding on the same surface can exhibit switch-like behaviour, depending on the concentration of receptors on the surface. When the receptor concentration is low, energy dominates the free energy of binding, and particles having a small number of strongly-binding ligands preferentially bind to the surface. At higher receptor concentrations, multivalent effects become significant, and entropy dominates the binding free energy; particles having many weakly-binding ligands preferentially bind to the surface. Between these two regimes there is a “switch-point”, at which the surface binds the two species of particles equally strongly. We demonstrate that a simple theory can account for this switch-like behaviour and present numerical calculations that support the theoretical predictions. We argue that binding selectivity based on receptor density, rather than identity, may have practical applications.

Supplementary material


  1. 1.
    M. Mammen, S.K. Choi, G.M. Whitesides, Angew. Chem. Inter. Ed. 37, 2754 (1998)CrossRefGoogle Scholar
  2. 2.
    Y. Ke, L.L. Ong, W.M. Shih, P. Yin, Science 338, 1177 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    J.D. Halverson, A.V. Tkachenko, Phys. Rev. E 87, 062310 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    A. Reinhardt, D. Frenkel, Phys. Rev. Lett. 112, 238103 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    L.O. Hedges, R.V. Mannige, S. Whitelam, Soft Matter 10, 6404 (2014)CrossRefGoogle Scholar
  6. 6.
    W.M. Jacobs, A. Reinhardt, D. Frenkel, Proc. Nat. Acad. Sci. USA 112, 6313 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    F.J. Martinez-Veracoechea, D. Frenkel, Proc. Nat. Acad. Sci. USA 108, 10963 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    C.T. Varner, T. Rosen, J.T. Martin, R.S. Kane, Biomacromolecules 16, 43 (2015)CrossRefGoogle Scholar
  9. 9.
    C.A. Mirkin, R.L. Letsinger, R.C. Mucic, J.J. Storhoff, Nature 382, 607 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    P.L. Biancaniello, A.J. Kim, J.C. Crocker, Phys. Rev. Lett. 94, 058302 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    N. Geerts, E. Eiser, Soft Matter 6, 4647 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    P. Varilly, S. Angioletti-Uberti, B.M. Mognetti, D. Frenkel, J. Chem. Phys. 137, 094108 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    L.D. Michele, E. Eiser, Phys. Chem. Chem. Phys. 15, 3115 (2013)CrossRefGoogle Scholar
  14. 14.
    B.D. Myers, Q.Y. Lin, H. Wu, E. Luijten, C.A. Mirkin, V.P. Dravid, ACS Nano, Article ASAP, doi:  10.1021/acsnano.6b02246 (2016)
  15. 15.
    C.S. Mahon, D.A. Fulton, Nat. Chem. 6, 665 (2014)CrossRefGoogle Scholar
  16. 16.
    R. de laRica, R.M. Fratila, A. Szarpak, J. Huskens, A.H. Velders, Angew. Chem. Inter. Ed. 50, 5704 (2011)CrossRefGoogle Scholar
  17. 17.
    N.B. Tito, S. Angioletti-Uberti, D. Frenkel, J. Chem. Phys. 144, 161101 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    R.J. Rubin, J. Chem. Phys. 43, 2392 (1965)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    S. Hong, P.R. Leroueil, I.J. Majoros, B.G. Orr, J.R. Baker Jr., M.M. Banaszak Holl, Chem. & Biol. 14, 107 (2007)CrossRefGoogle Scholar
  20. 20.
    N.A. Licata, A.V. Tkachenko, Phys. Rev. Lett. 100, 158102 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    C. Nicosia, J. Huskens, Mater. Horiz. 1, 32 (2014)CrossRefGoogle Scholar
  22. 22.
    Y. Li, Y.D. Tseng, S.Y. Kwon, L. d'Espaux, J.S. Bunch, P.L. McEuen, D. Luo, Nat. Mater. 3, 38 (2003)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of CambridgeCambridge CB2 1EWUK

Personalised recommendations