The European Physical Journal Special Topics

, Volume 225, Issue 13–14, pp 2635–2643 | Cite as

Nonlinear resonance and synchronization in the ring of unidirectionally coupled Toda oscillators

Open Access
Regular Article Numerical Continuation in Self-sustained Oscillators
  • 112 Downloads
Part of the following topical collections:
  1. Temporal and Spatio-Temporal Dynamic Instabilities: Novel Computational and Experimental Approaches

Abstract

In the ring of unidirectionally coupled Toda oscillators the nonlinear resonance and the synchronization are investigated. It is shown how the nonlinear resonance affects the structure of the main synchronization region. As a result of nonlinear resonance we observe the coexistence of two stable limit cycles near the resonant frequency, which leads to coexistence of periodic and quasi-periodic regimes within the synchronization region.

References

  1. 1.
    W. Ebeling, P.S. Landa, V.G. Ushakov, Phys. Rev. E 63, 046601 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    P. Perlikowski, S. Yanchuk, M. Wolfrum, A. Stefanski, P. Mosiolek, T. Kapitaniak, Chaos 20, 03111 (2010)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    A. Dvorak, P. Kuzma, P. Perlikowski, V. Astakhov, T. Kapitaniak, Eur. Phys. J. Special Topics 222, 2429 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    A.A. Dvorak, V.V. Astakhov, N.V. Stankevich, Dinamika kolcevogo generatora iz odnonapravlenno sviazannyh oscillatorov Tody. “Trudy shkoly-seminara” Volny-2013 Fizicheskii Fakultet MGU (2013) (in Russian)Google Scholar
  5. 5.
    K. Czolczynski, P. Perlikowski, A. Stefanski, T. Kapitaniak, Chaos Solitons Fractals 32, 937 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    K. Geist, W. Lauterborn, Physica D 31, 103 (1988)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    K. Geist, W. Lauterborn, Physica D 41, 1 (1990)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    K. Geist, W. Lauterborn, Physica D 52, 551 (1991)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    J. Kozlowski, U. Parlitz, W. Lauterborn, Phys. Rev. E. 51, 1861 (1995)ADSCrossRefGoogle Scholar
  10. 10.
    S.I. Arroyo, D.H. Zanette, Eur. Phys. J. B 89, 12 (2016)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    G. Habib, T. Detroux, R. Viguie, G. Kerschen, Mech. Syst. Signal Proc. 52, 17 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    A. Balanov, N. Janson, D. Postnov, O. Sosnovtseva, Synchronization: From Simple to Complex (Springer Science & Business Media, 2008)Google Scholar
  13. 13.
    A. Pikovsky, Y.L. Maistrenko, Synchronization: Theory and Application (Springer Science & Business Media, 2012)Google Scholar
  14. 14.
    G.V. Osipov, J. Kurths, Ch. Zhou, Synchronization in Oscillatory Networks (Springer Science & Business Media, 2007)Google Scholar
  15. 15.
    S. Yanchuk, A. Stefanski, T. Kapitaniak, J. Wojewoda, Phys. Rev. E 73, 016209 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    R. Mettin, U. Parlitz, W. Lauterborn, Int. J. Bifurc. Chaos 3, 1529 (1993)MathSciNetCrossRefGoogle Scholar
  17. 17.
    A.P. Kuznetsov, N.V. Stankevich, L.V. Turukina, Physica D 238, 1203 (2009)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    G.B. Ermentrout, Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students (SIAM, Philadelphia, 2002)Google Scholar
  19. 19.
    E.J. Doedel, ‘Auto-07P: Continuation and bifurcation software for ordinary differential equations’ with major contributions from A.R. Champneys, T.F. Fairgrieve, Yu.A. Kuznetsov, B.E. Oldeman, R.C. Paffenroth, B. Sandstede, X.J. Wang, and C. Zhang; available from http://cmvl.cs.concordia.ca/auto/
  20. 20.
    T. Kurz, W. Lauterborn, Phys. Rev. A 37, 1029 (1988)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Department of Radioelectronics and TelecommunicationsYuri Gagarin State Technical University of SaratovSaratovRussia
  2. 2.Division of Dynamics, Lodz University of TechnologyLodzPoland

Personalised recommendations