Advertisement

The European Physical Journal Special Topics

, Volume 225, Issue 6–7, pp 1087–1101 | Cite as

Recent results on time-dependent Hamiltonian oscillators

  • M. Robnik
Regular Article Session B: Papers I
  • 64 Downloads
Part of the following topical collections:
  1. Mathematical Modeling of Complex Systems

Abstract

Time-dependent Hamilton systems are important in modeling the nondissipative interaction of the system with its environment. We review some recent results and present some new ones. In time-dependent, parametrically driven, one-dimensional linear oscillator, the complete analysis can be performed (in the sense explained below), also using the linear WKB method. In parametrically driven nonlinear oscillators extensive numerical studies have been performed, and the nonlinear WKB-like method can be applied for homogeneous power law potentials (which e.g. includes the quartic oscillator). The energy in time-dependent Hamilton systems is not conserved, and we are interested in its evolution in time, in particular the evolution of the microcanonical ensemble of initial conditions. In the ideal adiabatic limit (infinitely slow parametric driving) the energy changes according to the conservation of the adiabatic invariant, but has a Dirac delta distribution. However, in the general case the initial Dirac delta distribution of the energy spreads and we follow its evolution, especially in the two limiting cases, the slow variation close to the adiabatic regime, and the fastest possible change – a parametric kick, i.e. discontinuous jump (of a parameter), where some exact analytic results are obtained (the so-called PR property, and ABR property). For the linear oscillator the distribution of the energy is always, rigorously, the arcsine distribution, whose variance can in general be calculated by the linear WKB method, while in nonlinear systems there is no such universality. We calculate the Gibbs entropy for the ensembles of noninteracting nonlinear oscillator, which gives the right equipartition and thermostatic laws even for one degree of freedom.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Bountis, H. Christodoulidi, Nonlinear Phenomena in Complex Systems (Minsk) 18(33), 288 (2015)Google Scholar
  2. 2.
    T. Bountis, H. Skokos, Complex Hamiltonian Dynamics (Springer-Verlag, Berlin, 2012) and references thereinGoogle Scholar
  3. 3.
    P. Hertz, Annalen der Physik 338, 225 (1910)ADSCrossRefGoogle Scholar
  4. 4.
    M. Robnik, Nonlinear Phenomena in Complex Systems (Minsk) 18, 356 (2015)Google Scholar
  5. 5.
    V.I. Arnold, Mathematical Methods in Classical Mechanics (Springer, New York, 1989)Google Scholar
  6. 6.
    L.D. Landau, E.M. Lifshitz, Mechanics: Course of Theoretical Physics (Butterworth-Heineman, Oxford, 1996)Google Scholar
  7. 7.
    W.P. Reinhardt, Prog. Theor. Phys. Suppl. 116, 179 (1994)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    J. Henrard, in Dynamics Reported, Vol. 2, edited by C.K.R.T Jones, U. Kirchgraber, H.O. Walther (Springer, Berlin, 1993), p. 117Google Scholar
  9. 9.
    P. Lochak, C. Meunier, Multiphase Averaging for Classical Systems (Springer, New York, 1988)Google Scholar
  10. 10.
    P. Gaspard, Chaos, Scattering and Statistical Mechanics (Cambridge, Cambridge University Press, 1998)Google Scholar
  11. 11.
    A. Einstein, Inst. Intern. Phys. Solway, Rapports et discussions 1, 450 (1911)Google Scholar
  12. 12.
    R.M. Kulsrud, Phys. Rev. 106, 205 (1957)ADSCrossRefGoogle Scholar
  13. 13.
    M. Robnik, V.G. Romanovski, J. Phys. A: Math. Theor. 33, L35 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    F. Hertweck, A. Schluter, Z. Naturforschung 12A, 844 (1957)ADSMathSciNetGoogle Scholar
  15. 15.
    C.S. Gardner, Phys. Rev. 115, 791 (1959)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    A. Lenard, Ann. Phys. NY 6, 261 (1959)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    E.D. Courant, H.S. Snyder, Ann. Phys. NY 3, 1 (1958)ADSCrossRefGoogle Scholar
  18. 18.
    J.E. Littlewood, Ann. Phys. NY 21, 233 (1963)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    M. Kruskal, J. Math. Phys. 3, 806 (1962)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    H.R. Lewis, J. Math. Phys. 9, 1976 (1968)ADSCrossRefGoogle Scholar
  21. 21.
    K.R. Symon, J. Math. Phys. 11, 1320 (1970)ADSCrossRefGoogle Scholar
  22. 22.
    G. Knorr, G.D. Pfirsch, Z. Naturforschung 21, 688 (1966)ADSGoogle Scholar
  23. 23.
    R.E. Meyer, Z. angew. Math. Phys. 24, 293 (1973)MathSciNetCrossRefGoogle Scholar
  24. 24.
    R.E. Meyer, Z. angew. Math. Phys. 24, 517 (1973)MathSciNetCrossRefGoogle Scholar
  25. 25.
    J.W. Gibbs, Elementary Principles in Statistical Mechanics (Scribner’s sons, New York, 1902)Google Scholar
  26. 26.
    J. Dunkel, S. Hilbert, Nat. Phys. 10, 68 (2014)CrossRefGoogle Scholar
  27. 27.
    M. Robnik, V.G. Romanovski, Open Syst. Inform. Dyn. 13, 197 (2006)MathSciNetCrossRefGoogle Scholar
  28. 28.
    M. Robnik, V.G. Romanovski, H.-J. Stöckmann, J. Phys. A: Math. Theor. 33, L551 (2006)CrossRefGoogle Scholar
  29. 29.
    M. Robnik, V.G. Romanovski, in Proceedings of the 7th International Summer School and Conference Let’s Face Chaos through Nonlinear Dynamics, 2008, AIP Conf. Proc. 1076, edited by M. Robnik, V.G. Romanovski (AIP, Melville, New York, 2008)Google Scholar
  30. 30.
    G. Papamikos, Ph.D. thesis, University of Ljubljana and CAMTP, University of Maribor, 2011Google Scholar
  31. 31.
    G. Papamikos, M. Robnik, J. Phys. A: Math. Theor. 44, 315102 (2011)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    R.I. McLachlan, SIAM J. Sci. Comput. 16, 151 (1995)MathSciNetCrossRefGoogle Scholar
  33. 33.
    R.I. MacLachlan, G.R.W. Quispel, Acta Numer. 11, 341 (2002)MathSciNetGoogle Scholar
  34. 34.
    D. Andresas, M. Robnik, J. Phys. A: Math. Theor. 47, 355102 (2014)CrossRefGoogle Scholar
  35. 35.
    D. Andresas, Ph.D. thesis, University of Maribor, CAMTP, 2015Google Scholar
  36. 36.
    G. Papamikos, M. Robnik, J. Phys. A: Math. Theor. 45, 015206-1 (2012)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    D. Andresas, B. Batistić, M. Robnik, Phys. Rev. E 89, 062927 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    M. Robnik, V.G. Romanovski, J. Phys. A: Math. General 33, 5093 (2000)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    M. Robnik, Phys. Rev. E (submitted) (2015)Google Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  • M. Robnik
    • 1
  1. 1.CAMTP-Center for Applied Mathematics and Theoretical Physics, University of MariborMariborSlovenia

Personalised recommendations