The European Physical Journal Special Topics

, Volume 225, Issue 2, pp 231–242 | Cite as

Strain rate change tests with the Split Hopkinson Bar method

  • M. Isakov
  • J. Kokkonen
  • K. Östman
  • V.-T. Kuokkala
Regular Article
Part of the following topical collections:
  1. Dynamic Behaviour of Materials at High Strain Rates: Experiment, Modelling and Simulation

Abstract

In this paper, methods to produce rapid strain rate changes for strain rate sensitivity measurements in Split Hopkinson Bar arrangements are presented and discussed. Two different cases are considered: a strain rate change test within the high strain rate region in compression, and a tension test incorporating a large strain rate jump directly from the low strain rate region to high strain rates. The former method is based on the loading wave amplitude manipulation, while the latter method is based on the incorporation of a low strain rate loading device into a Tensile Split Hopkinson Bar apparatus.

Keywords

High Strain Rate European Physical Journal Special Topic Strain Rate Change Incident Wave Amplitude Strain Rate Jump 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.D. Campbell, A.R. Dowling, J. Mech. Phys. Solids. 18, 43 (1970)ADSCrossRefGoogle Scholar
  2. 2.
    R.A. Frantz, J. Duffy, J. Appl. Mech. 39, 939 (1972)ADSCrossRefGoogle Scholar
  3. 3.
    P.E. Senseny, J. Duffy, R.H. Hawley, J. Appl. Mech. 45, 60 (1978)ADSCrossRefGoogle Scholar
  4. 4.
    A.S.M. Eleiche, Exp. Mech. 21, 285 (1981)CrossRefGoogle Scholar
  5. 5.
    J.R. Klepaczko, C.Y. Chiem, J. Mech. Phys. Solids 34, 29 (1986)ADSCrossRefGoogle Scholar
  6. 6.
    J. Lipkin, J.D. Campbell, J.C. Swearengen, J. Mech. Phys. Solids 26, 251 (1978)ADSCrossRefGoogle Scholar
  7. 7.
    A. Gilat, Y.H. Pao, Exp. Mech. 28, 322 (1988)CrossRefGoogle Scholar
  8. 8.
    S. Nemat-Nasser, Y.F. Li, J.B. Isaacs, Mech. Mater. 17, 111 (1994)CrossRefGoogle Scholar
  9. 9.
    R. Kapoor, J.B. Singh, J.K. Chakravartty, Mater. Sci. Eng. A 496, 308 (2008)CrossRefGoogle Scholar
  10. 10.
    H. Takeyama, Y. Sato, T. Tobe, M. Kato, N. Takatsu, J. Phys. 46, C5-645 (1985)Google Scholar
  11. 11.
    C. Nicolazo, M. Leroy, Mech. Mater. 34, 231 (2002)CrossRefGoogle Scholar
  12. 12.
    D. Rittel, G. Ravichandran, A. Venkert, Mater. Sci. Eng. A 432, 191 (2006)CrossRefGoogle Scholar
  13. 13.
    J. Van Slycken, Ph.D. thesis, Ghent University, 2008Google Scholar
  14. 14.
    A.M. Bragov, A.K. Lomunov, Int. J. Impact. Eng. 16, 321 (1995)CrossRefGoogle Scholar
  15. 15.
    R.E. Briggs, D.R. Drodge, D.M. Williamson, W.G. Proud, Shock Compression of Condensed Matter – 2007 (American Institute of Physics, Melville, NY, 2007), p. 1173Google Scholar
  16. 16.
    H. Kobayashi, M. Daimaruya, T. Nojima, T. Kajino, J. Phys. IV (France) 10, PR9-433 (2000)Google Scholar
  17. 17.
    D.J. Parry, S. Dixon, S. Hodson, N. Al-Maliky, J. Phys. IV (France) 4, C8-107 (1994)CrossRefGoogle Scholar
  18. 18.
    D.J. Frew, M.J. Forrestal, W. Chen, Exp. Mech. 41, 40 (2001)CrossRefGoogle Scholar
  19. 19.
    L.M. Yang, V.P.W. Shim, Int. J. Impact. Eng. 31, 129 (2005)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • M. Isakov
    • 1
  • J. Kokkonen
    • 1
  • K. Östman
    • 1
  • V.-T. Kuokkala
    • 1
  1. 1.Tampere University of Technology, Department of Materials ScienceTampereFinland

Personalised recommendations