The European Physical Journal Special Topics

, Volume 225, Issue 15–16, pp 2817–2838 | Cite as

Creating arbitrary 2D arrays of single atoms for the simulation of spin systems with Rydberg states

Regular Article Rydberg Technologies
  • 80 Downloads
Part of the following topical collections:
  1. Cooperativity and Control in Highly Excited Rydberg Ensembles – Achievements of the European Marie Curie ITN COHERENCE

Abstract

We present an experimental setup for creating arbitrary two-dimensional arrays of optical microtraps to trap single atoms for experiments with Rydberg atoms. We use a spatial light modulator to manipulate the spatial phase of a far red-detuned optical dipole trap beam, which allows us to create arbitrary arrays of optical microtraps, by focusing the beam with an in-vacuum high numerical-aperture aspheric lens. We load atoms in the microtraps from a dilute cloud of cold atoms, having at most one atom in each trap due to fast light-assisted collisions. Real-time analysis of the atomic fluorescence with a sensitive CCD camera allows us to determine the filling of each trap individually with a  >10 Hz rate. We can create strong interactions between the atoms by exciting them to Rydberg states, with an efficiency of single atom resolved Rydberg detection of  >95%.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, New York, USA, 2011)Google Scholar
  2. 2.
    I. Bloch, J. Dalibard, S. Nascimbène, Nat. Phys. 8, 267 (2012)CrossRefGoogle Scholar
  3. 3.
    R. Blatt, C.F. Roos, Nat. Phys. 8, 277 (2012)CrossRefGoogle Scholar
  4. 4.
    C. Schneider, D. Porras, T. Schaetz, Rep. Prog. Phys. Phys. Soci. (Great Britain) 75, 024401 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    X. Peng, J. Zhang, J. Du, D. Suter, Phys. Rev. Lett. 103, 140501 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    A. Aspuru-Guzik, P. Walther, Nat. Phys. 8, 285 (2012)CrossRefGoogle Scholar
  7. 7.
    A.A. Houck, H.E. Türeci, J. Koch, Nat. Phys. 8, 292 (2012)CrossRefGoogle Scholar
  8. 8.
    T. Byrnes, N.Y. Kim, K. Kusudo, Y. Yamamoto, Phys. Rev. B 78, 075320 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    A. Aspect, P. Grangier, G. Roger, Phys. Rev. Lett. 47, 460 (1981)ADSCrossRefGoogle Scholar
  10. 10.
    R. Lopes, A. Imanaliev, A. Aspect, M. Cheneau, D. Boiron, C.I. Westbrook, Nature 520, 66 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    B. Hensen, H. Bernien, A.E. Dréau, A. Reiserer, N. Kalb, M.S. Blok, J. Ruitenberg, R.F.L. Vermeulen, R.N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M.W. Mitchell, M. Markham, D.J. Twitchen, D. Elkouss, S. Wehner, T.H. Taminiau, R. Hanson, Nature 526, 682 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    M. Cheneau, P. Barmettler, D. Poletti, M. Endres, P. Schauß, T. Fukuhara, C. Gross, I. Bloch, C. Kollath, S. Kuhr, Nature 481, 484 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    I.M. Georgescu, S. Ashhab, F. Nori, Rev. Mod. Phys. 86, 153 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    R.P. Feynman, Int. J. Theor. Phys. 21, 467 (1982)MathSciNetCrossRefGoogle Scholar
  15. 15.
    A. Auerbach, Interacting Electrons and Quantum Magnetism (Springer Science & Business Media, 2012)Google Scholar
  16. 16.
    J. Simon, W.S. Bakr, R. Ma, M.E. Tai, P.M. Preiss, M. Greiner, Nature 472, 307 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    J. Struck, C. Ölschläger, R. Le Targat, P. Soltan-Panahi, A. Eckardt, M. Lewenstein, P. Windpassinger, K. Sengstock, Science 333, 996 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    J.W. Britton, B.C. Sawyer, A.C. Keith, C.-C.J. Wang, J.K. Freericks, H. Uys, M.J. Biercuk, J.J. Bollinger, Nature 484, 489 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    J.G. Bohnet, B.C. Sawyer, J.W. Britton, M.L. Wall, A.M. Rey, M. Foss-Feig, J.J. Bollinger, Science 352, 1297 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    M. Ortner, A. Micheli, G. Pupillo, P. Zoller, New J. Phys. 11, 055045 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    D. Peter, N.Y. Yao, N. Lang, S.D. Huber, M.D. Lukin, H.P. Büchler, Phys. Rev. A 91, 053617 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    S.A. Moses, J.P. Covey, M.T. Miecnikowski, B. Yan, B. Gadway, J. Ye, D.S. Jin, Science 350, 659 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    T.F. Gallagher, Rydberg atoms, 3rd ed. (Cambridge University Press, 2005)Google Scholar
  24. 24.
    M. Saffman, T.G. Walker, K. Mølmer, Rev. Mod. Phys. 82, 2313 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, A. Browaeys, Phys. Rev. X 4, 021034 (2014)Google Scholar
  26. 26.
    D. Barredo, S. Ravets, H. Labuhn, L. Béguin, A. Vernier, F. Nogrette, T. Lahaye, A. Browaeys, Phys. Rev. Lett. 112, 183002 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    H. Labuhn, S. Ravets, D. Barredo, L. Béguin, F. Nogrette, Phys. Rev. A 90, 023415 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    S. Ravets, H. Labuhn, D. Barredo, L. Béguin, T. Lahaye, A. Browaeys, Nat. Phys. 10, 914 (2014)CrossRefGoogle Scholar
  29. 29.
    D. Barredo, H. Labuhn, S. Ravets, T. Lahaye, A. Browaeys, C.S. Adams, Phys. Rev. Lett. 114, 113002 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    S. Ravets, H. Labuhn, D. Barredo, T. Lahaye, A. Browaeys, Phys. Rev. A 92, 020701 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    H. Labuhn, D. Barredo, S. Ravets, S. de Léséleuc, T. Macrì, T. Lahaye, A. Browaeys, Nature 534, 667 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    L. Béguin, Measurement of the Van der Waals Interaction Between two Rydberg Atoms, PhD thesis, Université Paris IX, 2013Google Scholar
  33. 33.
    Y.R.P. Sortais, H. Marion, C. Tuchendler, A.M. Lance, M. Lamare, P. Fournet, C. Armellin, R. Mercier, G. Messin, A. Browaeys, P. Grangier, Phys. Rev. A 75, 013406 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    R. Grimm, M. Weidemüller, Y.B. Ovchinnikov, Optical Dipole Traps for Neutral Atoms, 42, 95 (2000)Google Scholar
  35. 35.
    N. Schlosser, G. Reymond, P. Grangier, Phys. Rev. Lett. 89, 023005 (2002)ADSCrossRefGoogle Scholar
  36. 36.
    A. Fuhrmanek, R. Bourgain, Y.R.P. Sortais, A. Browaeys, Phys. Rev. A 85, 062708 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    C. Tuchendler, A.M. Lance, A. Browaeys, Y.R.P. Sortais, P. Grangier, Phys. Rev. A 78, 033425 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    L. Béguin, A. Vernier, R. Chicireanu, T. Lahaye, A. Browaeys, Phys. Rev. Lett. 110, 263201 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    I. Bloch, Nat. Phys. 1, 23 (2005)CrossRefGoogle Scholar
  40. 40.
    K.D. Nelson, X. Li, D.S. Weiss, Nat. Phys. 3, 556 (2007)CrossRefGoogle Scholar
  41. 41.
    R. Dumke, M. Volk, T. Müther, F.B.J. Buchkremer, G. Birkl, W. Ertmer, Phys. Rev. Lett. 89, 097903 (2002)ADSCrossRefGoogle Scholar
  42. 42.
    M. Schlosser, S. Tichelmann, J. Kruse, G. Birkl, Quantum Inf. Process. 10, 907 (2011)CrossRefGoogle Scholar
  43. 43.
    R. Newell, J. Sebby, T.G. Walker, Opt. Lett. 28, 1266 (2003)ADSCrossRefGoogle Scholar
  44. 44.
    J.W. Goodman, Introduction to Fourier Optics, 2nd ed. (Roberts & Company Publishers, 1996)Google Scholar
  45. 45.
    R.W. Gerchberg, W.O. Saxton, Optik 35, 237 (1972)Google Scholar
  46. 46.
    R.M.W. van Bijnen, Quantum Engineering with Ultracold Atoms, PhD thesis, Technische Universiteit Eindhoven, 2013Google Scholar
  47. 47.
    B.C. Platt, R. Shack, J. Refractive Surg. 17, 573 (2001)Google Scholar
  48. 48.
    N. Matsumoto, T. Inoue, T. Ando, Yu. Takiguchi, Y. Ohtake, H. Toyoda, Opt. Lett. 37, 3135 (2012)ADSCrossRefGoogle Scholar
  49. 49.
    H.C. Nägerl, D. Leibfried, H. Rohde, G. Thalhammer, J. Eschner, F. Schmidt-Kaler, R. Blatt, Phys. Rev. A 60, 145 (1999)ADSCrossRefGoogle Scholar
  50. 50.
    J. Kruse, C. Gierl, M. Schlosser, G. Birkl, Phys. Rev. A 81, 060308 (2010)ADSCrossRefGoogle Scholar
  51. 51.
    K.M. Maller, M.T. Lichtman, T. Xia, Y. Sun, M.J. Piotrowicz, A.W. Carr, L. Isenhower, M. Saffman, Phys. Rev. A 92, 022336 (2015)ADSCrossRefGoogle Scholar
  52. 52.
    N. Lundblad, J.M. Obrecht, I.B. Spielman, J.V. Porto, Nat. Phys. 5, 575 (2009)CrossRefGoogle Scholar
  53. 53.
    D. Schrader, I. Dotsenko, M. Khudaverdyan, Y. Miroshnychenko, A. Rauschenbeutel, D. Meschede, Phys. Rev. Lett. 93, 150501 (2004)ADSCrossRefGoogle Scholar
  54. 54.
    C. Weitenberg, M. Endres, J.F. Sherson, M. Cheneau, P. Schauß, T. Fukuhara, I. Bloch, S. Kuhr, Nature 471, 319 (2011)ADSCrossRefGoogle Scholar
  55. 55.
    J.H. Lee, E. Montano, I.H. Deutsch, P.S. Jessen, Nat. Commun. 4, 2027 (2013)ADSGoogle Scholar
  56. 56.
    H. Friedrich, Theoretical Atomic Physics, vol. 1 (Springer, Berlin, Heidelberg, 1991)Google Scholar
  57. 57.
    L. Li, Y.O. Dudin, A. Kuzmich, Nature 498, 3 (2013)Google Scholar
  58. 58.
    Y. Miroshnychenko, A. Gaëtan, C. Evellin, P. Grangier, D. Comparat, P. Pillet, T. Wilk, A. Browaeys, Phys. Rev. A 82, 013405 (2010)ADSCrossRefGoogle Scholar
  59. 59.
    B.J. Lester, N. Luick, A.M. Kaufman, C.M. Reynolds, C.A. Regal, Phys. Rev. Lett. 115, 073003 (2015)ADSCrossRefGoogle Scholar
  60. 60.
    Y.H. Fung, M.F. Andersen, New J. Phys. 17, 073011 (2015)ADSCrossRefGoogle Scholar
  61. 61.
    E.D. Black, Am. J. Phys. 69, 79 (2001)ADSCrossRefGoogle Scholar
  62. 62.
    A. O‗Keefe, D.A.G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988)ADSCrossRefGoogle Scholar
  63. 63.
    T.F. Gallagher, P. Pillet, Adv. At. Mol. Opt. Phys. 56, 161 (2008)ADSCrossRefGoogle Scholar
  64. 64.
    P. Schauss, J. Zeiher, T. Fukuhara, S. Hild, M. Cheneau, T. Macri, T. Pohl, I. Bloch, C. Gross, Science 347, 1455 (2015)ADSCrossRefGoogle Scholar
  65. 65.
    H. Weimer, R. Löw, T. Pfau, H.P. Büchler, Phys. Rev. Lett. 101, 250601 (2008)ADSCrossRefGoogle Scholar
  66. 66.
    H. Weimer, H.P. Büchler, Phys. Rev. Lett. 105, 230403 (2010)ADSCrossRefGoogle Scholar
  67. 67.
    I. Lesanovsky, Phys. Rev. Lett. 106, 025301 (2011)ADSCrossRefGoogle Scholar
  68. 68.
    P. Richerme, Z.-X. Gong, A. Lee, C. Senko, J. Smith, M. Foss-Feig, S. Michalakis, A.V. Gorshkov, C. Monroe, Nature 511, 198 (2014)ADSCrossRefGoogle Scholar
  69. 69.
    P. Jurcevic, B.P. Lanyon, P. Hauke, C. Hempel, P. Zoller, R. Blatt, C.F. Roos, Nature 511, 202 (2014)ADSCrossRefGoogle Scholar
  70. 70.
    I. Mourachko, D. Comparat, F. de Tomasi, A. Fioretti, P. Nosbaum, V.M. Akulin, P. Pillet, Phys. Rev. Lett. 80, 253 (1998)ADSCrossRefGoogle Scholar
  71. 71.
    W.R. Anderson, J.R. Veale, T.F. Gallagher, Phys. Rev. Lett. 80, 249 (1998)ADSCrossRefGoogle Scholar
  72. 72.
    C.S.E. van Ditzhuijzen, A.F. Koenderink, J.V. Hernández, F. Robicheaux, L.D. Noordam, H.B.V.L. van den Heuvell, Phys. Rev. Lett. 100, 243201 (2008)ADSCrossRefGoogle Scholar
  73. 73.
    G. Gunter, H. Schempp, M. Robert-de-Saint-Vincent, V. Gavryusev, S. Helmrich, C.S. Hofmann, S. Whitlock, M. Weidemuller, Science 342, 954 (2013)ADSCrossRefGoogle Scholar
  74. 74.
    D. Maxwell, D.J. Szwer, D. Paredes-Barato, H. Busche, J.D. Pritchard, A. Gauguet, K.J. Weatherill, M.P.A. Jones, C.S. Adams, Phys. Rev. Lett. 110, 103001 (2013)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  1. 1.Laboratoire Charles Fabry, Institut dOptique, CNRS, Univ. Paris Sud 11Palaiseau cedexFrance

Personalised recommendations