The European Physical Journal Special Topics

, Volume 224, Issue 17–18, pp 3233–3244 | Cite as

Rheotaxis performance increases with group size in a coupled phase model with sensory noise

The effects of noise and group size on rheotaxis
Regular Article Physics of Social Interactions
Part of the following topical collections:
  1. Dynamics of Animal Systems

Abstract

Many fish exhibit rheotaxis, a behavior in which fish orient themselves relative to flow. Rheotaxis confers many benefits, including energetic cost savings and interception of drifting prey. Despite the fact that most species of fish school during at least some portion of their life, little is known about the importance of rheotactic behavior to schooling fish and, conversely, how the presence of nearby conspecifics affects rheotactic behavior. Understanding how rheotaxis is modified by social factors is thus of ecological importance. Here we present a mathematical model in the form of an all-to-all, coupled-oscillator framework over the non-Euclidean space of fish orientations to model group rheotactic behavior. Individuals in the model measure the orientation of their neighbors and the flow direction relative to their own orientation. These measures are corrupted by sensory noise. We study the effect of sensory noise and group size on internal (i.e., within the school) and external (i.e., with the flow) disagreement in orientation. We find that under noisy environmental conditions, increased group size improves rheotaxis. Results of this study have implications for understanding animal behavior, as well as for potential applications in bio-inspired engineering.

Keywords

Group Size European Physical Journal Special Topic Internal Disagreement Reference Direction External Disagreement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.P. Arnold, Biol. Rev. 49, 515 (1974)CrossRefGoogle Scholar
  2. 2.
    E.P. Lyon, Amer. J. Physiol. 12, 149 (1904)Google Scholar
  3. 3.
    H. Kleerekoper, Sensory Biology of Sharks, Skates and Rays (CRC Press, Inc., Arlington, VA, 1978), p. 269Google Scholar
  4. 4.
    J.M. Gardiner, J. Atema, J. Exp. Biol. 210, 1925 (2007)CrossRefGoogle Scholar
  5. 5.
    P. Tytler, J.E. Thorpe, W.M. Shearer, J. Fish Biol. 12, 575 (1978)CrossRefGoogle Scholar
  6. 6.
    J.E. Thorpe, L.G. Ross, G. Struthers, W. Watts, J. Fish Biol. 19, 519 (1981)CrossRefGoogle Scholar
  7. 7.
    Carton, G.A. Montgomery, C. John, J. Fish Biol. 62, 501 (2003)CrossRefGoogle Scholar
  8. 8.
    J. Montgomery, S. Coombs, M. Halstead, Rev. in Fish Biol. Fisheries 5, 399 (1995)CrossRefGoogle Scholar
  9. 9.
    W.D. Hamilton, J. Theor. Biol. 31, 295 (1971)CrossRefGoogle Scholar
  10. 10.
    J. Krause, G.D. Ruxton, Living in Groups (Oxford University Press, New York, 2002)Google Scholar
  11. 11.
    G. Rieucau, A. Fernö, C.C. Ioannou, N.O. Handegard, Rev. Fish Biol. Fisheries 25, 21 (2014)CrossRefGoogle Scholar
  12. 12.
    D. Grünbaum, Evolutionary Ecology 12, 503 (1998)CrossRefGoogle Scholar
  13. 13.
    C. Torney, Z. Neufeld, I.D. Couzin, Proc. Natl. Acad. Sci. 106, 22055 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    A. Berdahl, C.J. Torney, C.C. Ioannou, J.J. Faria, I. D.Couzin, Sci. 339, 574 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Aoki, I., Bull. Jpn Soc. Scient. Fisheries 48, 1081 (1982)CrossRefGoogle Scholar
  16. 16.
    I.D. Couzin, J. Krause, N.R. Franks, S.A. Levin, Nature 433, 513 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Phys. Rev. Lett. 75, 1226 (1995)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    B.L. Partridge, T.J. Pitcher, J. Comp. Physiol. 135, 315 (1980)CrossRefGoogle Scholar
  19. 19.
    A. Strandburg-Peshkin, C.R. Twomey, N.W.F. Bode, A.B. Kao, Y. Katz, C.C. Ioannou, S.B. Rosenthal, C.J. Torney, H.S. Wu, S.A. Levin, I.D. Couzin, Current Biol. 23, 709 (2013)CrossRefGoogle Scholar
  20. 20.
    D. Ojima, M. Iwata, Comparative Biochem. Physiol. – A 152, 293 (2009)CrossRefGoogle Scholar
  21. 21.
    A. Berdahl, P.A.H. Westley, S.A. Levin, I.D. Couzin, T.P. Quinn, Fish Fisheries (2014)Google Scholar
  22. 22.
    C.M. Breder, Bull. Museum Amer. Natural History 117, 393 (1959)Google Scholar
  23. 23.
    D.V. Radakov, Schooling and the Ecology of Fish (Wiley, New York, 1973)Google Scholar
  24. 24.
    I.D. Couzin, R. James, D. Mawdsley, D.P. Croft, J. Krause, Fish Cognition and Behavior (Wiley, Blackwell Publishing, Oxford, UK, 2006), p. 165Google Scholar
  25. 25.
    Y. Kuramoto, Int. Symposium on Math. Prob. Theor. Phys. (Springer, New York, 1975), p. 420Google Scholar
  26. 26.
    M. Huang, J.H. Manton, SIAM J. Control Optimiz. 48, 134 (2009)CrossRefGoogle Scholar
  27. 27.
    M. Rosbash, D. Stoleru, Y. Peng, Letters Nature 431, 862 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    B. Nabet, N.E. Leonard, I.D. Couzin, S.A. Levin, J. Nonlin. Sci. 19, 399 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    N.E. Leonard, T. Shen, B. Nabet, L. Scardovi, I.D. Couzin, S.A. Levin, Proc. Natl. Acad. Sci. USA 109, 227 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    A. Jadbabaie, J. Lin, A. Morse, IEEE Trans. Automatic Control 48, 988 (2003)MathSciNetCrossRefGoogle Scholar
  31. 31.
    L. Moreau, IEEE Trans. Automatic Control 50, 169 (2005)MathSciNetCrossRefGoogle Scholar
  32. 32.
    R. Sepulchre, D.A. Paley, N.E. Leonard, IEEE Trans. Automatic Control 53, 706 (2008)MathSciNetCrossRefGoogle Scholar
  33. 33.
    S.H. Strogatz, Physica D 143, 1 (2000)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    D.A. Paley, N.E. Leonard, R. Sepulchre, D. Grunbaum, J.K. Parrish, IEEE Control Syst. Mag. 27, 89 (2007)CrossRefGoogle Scholar
  35. 35.
    N. Mahmoudian, D.A. Paley, Proceedings of the 2011 Amer. Control Conf., 4014 (2011)Google Scholar
  36. 36.
    M.K.S. Yeung, S.H. Strogatz, Phys. Rev. Lett. 82, 648651 (1999)CrossRefGoogle Scholar
  37. 37.
    M. Mesbahi, M. Egerstedt, Graph Theoretic Methods in Multiagent Networks (Princeton University Press, New Jersey, 2010)Google Scholar
  38. 38.
    A. Papoulis, S.U. Pillai, Probability, Random Variables and Stochastic Processes (McGraw Hill Publishing Company, UK, 2002)Google Scholar
  39. 39.
    D.J. Higham, SIAM Rev. 43, 525 (2001)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    K. Mardia, P. Jupp, Directional Statistics (John Wiley & Sons, Hoboken, N.J., 1999)Google Scholar
  41. 41.
    J.J. Meager, P. Domenici, A. Shingles, A.C. Utne-Palm, J. Exp. Biol. 20, 4174 (2006)CrossRefGoogle Scholar
  42. 42.
    A. Chicoli, S. Butail, Y. Lun, J. Bak-Coleman, S. Coombs, D.A. Paley, J. Fish Biol. 84, 1401 (2006)CrossRefGoogle Scholar
  43. 43.
    A.M. Simmons, Trends Ecol. Evolution 19, 453 (2004)CrossRefGoogle Scholar
  44. 44.
    K.N. Laland, K. Williams, Behavioral Ecol. 9, 493 (1998)CrossRefGoogle Scholar
  45. 45.
    P.S. Skardahl, D. Taylor, J. Sun, A. Arenas, Phys. Rev. E 91, 010802 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    L. Giraldeau, T.J. Valone, J.J. Templeton, Philosophical Trans. Royal Soc. London. Series B, Biol. Sci. 357, 1559 (2002)CrossRefGoogle Scholar
  47. 47.
    G. Rieucau, L. Giraldeau, Behavioral Ecol. 20, 1217 (2009)CrossRefGoogle Scholar
  48. 48.
    S.V. Viscido, J.K. Parrish, D. Grünbaum, Ecological Modelling 183, 347 (2005)CrossRefGoogle Scholar
  49. 49.
    R.H.J.M. Kurvers, M. Wolf, J. Krause, Behavioral Ecol. Sociobiol. 68, 449 (2013)CrossRefGoogle Scholar
  50. 50.
    J. Bak-Coleman, A. Court, D.A. Paley, S. Coombs, J. Exp. Biol. 216, 2011 (2013)CrossRefGoogle Scholar
  51. 51.
    A.D. Brown, T.D. Mussen, J.A. Sisneros, A.B. Coffin, Hearing Res. 272, 1 (2011)CrossRefGoogle Scholar
  52. 52.
    W.J. vanTrump, S. Coombs, K. Duncan, M.J. McHenry, Hearing Res. 261, 42 (2010)CrossRefGoogle Scholar
  53. 53.
    A. Kao, I.D. Couzin, Proc. R. Soc. – B 281, 20133305 (2014)CrossRefGoogle Scholar
  54. 54.
    J. Acebrón, L.L. Bonilla, C.J.P. Vicente, R. Félix, S. Renato, Rev. Mod. Phys. 77, 137 (2005)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • A. Chicoli
    • 1
  • J. Bak-Coleman
    • 2
  • S. Coombs
    • 3
  • D.A. Paley
    • 4
  1. 1.Neuroscience and Cognitive Science, Department of Aerospace Engineering, University of MarylandMarylandUSA
  2. 2.Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonUSA
  3. 3.Department of Biological SciencesBowling Green State UniversityBowling Green, OhioUSA
  4. 4.Department of Aerospace Engineering and Institute for Systems ResearchUniversity of MarylandCollege Park, MarylandUSA

Personalised recommendations