The European Physical Journal Special Topics

, Volume 224, Issue 14–15, pp 3005–3021 | Cite as

Synergistic use of smart materials for vibration-based energy harvesting

  • L.L. Silva
  • S.A. Oliveira
  • P.M.C.L. Pacheco
  • M.A. Savi
Regular Article Prospective Materials and Structures for Energy Harvesting
Part of the following topical collections:
  1. Nonlinear and Multiscale Dynamics of Smart Materials in Energy Harvesting

Abstract

Vibration-based energy harvesting is an approach where available mechanical vibration energy is converted into electrical energy that can be employed for different purposes. This paper deals with the synergistic use of smart materials for energy harvesting purposes. In essence, piezoelectric and shape memory alloys are combined to build an energy harvesting system. The combined effect of these materials can increase the system performance and reduce some limitations. The possibility to control the mechanical stiffness under vibration by a shape memory alloy (SMA) element can provide the ability to tune resonant frequencies in order to increase the output power. The analysis is developed considering a one-degree of freedom mechanical system where the restitution force is provided by an SMA element. The electro-mechanical coupling is provided by a piezoelectric element. Linear piezoelectric constitutive equation is employed together with the Brinson’s model for SMA element. Numerical simulations are carried out showing different responses of the system indicating that the inclusion of the SMA element can be used to extend the operational range of the system.

Keywords

Martensite Shape Memory Alloy European Physical Journal Special Topic Energy Harvesting Smart Material 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.R. Anton, H.A. Sodano, Smart mater. Struct. 16, 1 (2007)CrossRefADSGoogle Scholar
  2. 2.
    D. Avirovik, A. Kumar, R.J Bodnar, S. Priya, Smart Mater. Struct. 22, 052001 (2013)CrossRefADSGoogle Scholar
  3. 3.
    Y. Bai, M. Carl, T.W. Button, Int. J. Struct. Stability Dyn. 14, 1440016 (2014)CrossRefGoogle Scholar
  4. 4.
    D.N. Betts, H.A. Kim, C.R. Bowen, D.J. Inman, Appl. Phys. Lett. 100, 114104 (2012)CrossRefADSGoogle Scholar
  5. 5.
    L.C. Brinson, J. Intel. Mater. Syst. Struct. 4, 229 (1993)CrossRefGoogle Scholar
  6. 6.
    A.S. De Paula, D.J. Inman, M.A. Savi, Mech. Syst. Signal Proc. 54, 405 (2015)CrossRefADSGoogle Scholar
  7. 7.
    N.E. Dutoit, B.L. Wardle, Integrated Ferroelectrics 83, 13 (2006)CrossRefGoogle Scholar
  8. 8.
    A. Erturk, J. Hoffmann, D.J. Inman, Appl. Phys. Lett. 94, 254102 (2009)CrossRefADSGoogle Scholar
  9. 9.
    A. Erturk, W.G.R. Vieira, De Marqui Jr., D.J. Inman, Appl. Phys. Lett. 96, 184103 (2010)CrossRefADSGoogle Scholar
  10. 10.
    A. Erturk, D.J. Inman (John Wiley & Sons, 2011a)Google Scholar
  11. 11.
    A. Erturk, D.J. Inman, J. Sound Vibration 330, 2339 (2011b)CrossRefADSGoogle Scholar
  12. 12.
    S.L. Kok, N.M. White, N.R. Harris, Measurement Science Techno. 20, 124010 (2009)CrossRefADSGoogle Scholar
  13. 13.
    D. Lagoudas, Shape Memory Alloys: Modeling and Engineering Applications (Springer, 2008)Google Scholar
  14. 14.
    B.P. Mann, N.D. Sims, J. Sound Vibration 319, 515 (2009)CrossRefADSGoogle Scholar
  15. 15.
    A. Paiva, M.A. Savi, Math. Problems Eng. 2006, 1 (2006)MathSciNetCrossRefGoogle Scholar
  16. 16.
    A. Ralib, A. Md, A.N. Nordin, H. Salleh, Microsystem Technol. 16, 1673 (2010)CrossRefGoogle Scholar
  17. 17.
    M. Rhimi, N. Lajnef, ASME 2012 Conference on Smart Mater. Adaptive Struct. Intel. Systems 2, 19 (2012)Google Scholar
  18. 18.
    S. Roundy, D. Steingart, L. Frechette, P. Wright, J. Rabaey, Wireless Sensor Networks 2920, 1 (2004)CrossRefGoogle Scholar
  19. 19.
    M.A. Savi, Intel. J. Non-linear Mech. 70, 2 (2015)CrossRefADSGoogle Scholar
  20. 20.
    G. Sebald, H. Kuwano, D. Guyomar, B. Ducharne, Smart Mater. Struct. 20, 102001 (2011)CrossRefADSGoogle Scholar
  21. 21.
    L.L. Silva, P.C. Monteiro, M.A. Savi, T.A. Netto, J. Intel. Mater. Systems Struct. 24, 1278 (2013)CrossRefGoogle Scholar
  22. 22.
    H.A. Sodano, J.D. Inman, G. Park, Shock Vibration Digest 36, 197 (2004)CrossRefGoogle Scholar
  23. 23.
    S.C. Stanton, A. Erturk, B.P. Mann, D.J. Inman, J. Appl. Phys 108, 074903 (2010)CrossRefADSGoogle Scholar
  24. 24.
    A. Triplett, D.D. Quinn, J. Intel. Mater. Systems Struct. 20, 1959 (2009)CrossRefGoogle Scholar
  25. 25.
    N. Wu, Q. Wang, X. Xie, Appl. Ocean Res. 50, 110 (2015)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • L.L. Silva
    • 1
  • S.A. Oliveira
    • 1
  • P.M.C.L. Pacheco
    • 1
  • M.A. Savi
    • 2
  1. 1.CEFET/RJ, Department of Mechanical EngineeringRio de JaneiroBrazil
  2. 2.Universidade Federal do Rio de Janeiro, COPPE, Department of Mechanical Engineering, Center for Nonlinear MechanicsRio de JaneiroBrazil

Personalised recommendations