The European Physical Journal Special Topics

, Volume 224, Issue 14–15, pp 2929–2948 | Cite as

Nonlinear dynamics and comparative analysis of hybrid piezoelectric-inductive energy harvesters subjected to galloping vibrations

Regular Article Dynamics of Hybrid Energy Harvesters
Part of the following topical collections:
  1. Nonlinear and Multiscale Dynamics of Smart Materials in Energy Harvesting

Abstract

Modeling and comparative analysis of galloping-based hybrid piezoelectric-inductive energy harvesting systems are investigated. Both piezoelectric and electromagnetic transducers are attached to the transverse degree of freedom of the prismatic structure in order to harvest energy from two possible sources. A fully-coupled electroaeroelastic model is developed which takes into account the coupling between the generated voltage from the piezoelectric transducer, the induced current from the electromagnetic transducer, and the transverse displacement of the bluff body. A nonlinear quasi-steady approximation is employed to model the galloping force. To determine the influences of the external load resistances that are connected to the piezoelectric and electromagnetic circuits on the onset speed of galloping, a deep linear analysis is performed. It is found that the external load resistances in these two circuits have significant effects on the onset speed of galloping of the harvester with the presence of optimum values. To investigate the effects of these transduction mechanisms on the performance of the galloping energy harvester, a nonlinear analysis is performed. Using the normal form of the Hopf bifurcation, it is demonstrated that the hybrid energy harvester has a supercritical instability for different values of the external load resistances. For well-defined wind speed and external load resistance in the electromagnetic circuit, the results showed that there is a range of external load resistances in the piezoelectric circuit at which the output power generated by the electromagnetic induction is very small. On the other hand, there are two optimal load resistances at which the output power by the piezoelectric transducer is maximum. Based on a comparative study, it is demonstrated the hybrid piezoelectric-inductive energy harvester is very beneficial in terms of having two sources of energy. However, compared to the classical piezoelectric and electromagnetic energy harvesters, the results show that, considering a hybrid energy harvester leads to an increase in the onset speed of galloping and a decrease in the levels of the harvested power in both the piezoelectric and electromagnetic circuits which is explained by the additional resistive shunt damping effects in the hybrid energy harvester.

Keywords

Wind Speed Hopf Bifurcation European Physical Journal Special Topic Bifurcation Diagram Load Resistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Muralt, J. Micromech. Microeng. 10, 136 (2000)CrossRefADSGoogle Scholar
  2. 2.
    S.P. Gurav, A. Kasyap, M. Sheplak, L. Cattafesta, R.T. Haftka, J.F.L. Goosen, F.V. Keulen, Proceedings 10th AIAA/ISSSMO Multidisciplinary Analysis and Optimization Conference, 3559 (2004)Google Scholar
  3. 3.
    D.J. Inman, B.L. Grisso, Smart Struct. Mater. Conf. SPIE 6174, 61740T (2006)CrossRefADSGoogle Scholar
  4. 4.
    A. Abdelkefi, M. Ghommem, Theor. Appl. Mech. Lett. 3, 052001 (2013)CrossRefGoogle Scholar
  5. 5.
    N. Sharpes, A. Abdelkefi, S. Priya, Ener. Harv. Syst. 1, 209 (2014)Google Scholar
  6. 6.
    H.A. Sodano, G. Park, D.J. Inman, Shock Vib. Dig. 36, 197 (2004)CrossRefGoogle Scholar
  7. 7.
    S. Priya, J. Electrocera. 19, 167 (2007)CrossRefGoogle Scholar
  8. 8.
    S.R. Anton, H.A. Sodano, Smart Mater. Struct. 16, 1 (2007)CrossRefADSGoogle Scholar
  9. 9.
    G. Litak, M.I. Friswell, S. Adhikari, Appl. Phys. Lett. 96, 214103 (2010)CrossRefADSGoogle Scholar
  10. 10.
    A. Abdelkefi, F. Najar, A.H. Nayfeh, S. Ben Ayed, Smart Mater. Struct. 20, 115007 (2011)CrossRefADSGoogle Scholar
  11. 11.
    A. Abdelkefi, A.H. Nayfeh, M.R. Hajj, Nonlinear Dyn. 67, 1147 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    M.I. Friswell, S.F. Ali, O. Bilgen, S. Adhikari, L.W. Lees, G. Litak, J. Intel. Mater. Syst. Struct. 23, 1505 (2012)CrossRefGoogle Scholar
  13. 13.
    M. Bryant, E. Garcia, Proceedings of SPIE 7493, 74931W (2009)CrossRefADSGoogle Scholar
  14. 14.
    A. Erturk, W.G.R. Vieira, C. De Marqui, D.J. Inman, Appl. Phys. Lett. 96, 184103 (2010)CrossRefADSGoogle Scholar
  15. 15.
    C. De Marqui, A. Erturk, D.J. Inman, J. Intel. Mater. Syst. Struct. 21, 983 (2010)CrossRefGoogle Scholar
  16. 16.
    H.D. Akaydin, N. Elvin, Y. Andrepoulos, Smart Mater. Struct. 21, 025007 (2012)CrossRefADSGoogle Scholar
  17. 17.
    H.L. Dai, A. Abdelkefi, L. Wang, J. Intel. Mater. Sys. Struct. 25, 1861 (2014)CrossRefGoogle Scholar
  18. 18.
    H.L. Dai, A. Abdelkefi, L. Wang, Nonlinear Dyn. 77, 967 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    J. Sirohi, R. Mahadik, J. Intel. Mater. Syst. Struct. 22, 2215 (2011)CrossRefGoogle Scholar
  20. 20.
    A. Abdelkefi, M.R. Hajj, A.H. Nayfeh, Smart Mater. Struct. 22, 015014 (2013)CrossRefADSGoogle Scholar
  21. 21.
    A. Abdelkefi, Z. Yan, M.R. Hajj, The Eur. Phys. J. Special Topics 222, 1483 (2013)CrossRefADSGoogle Scholar
  22. 22.
    Y. Yang, L. Zhao, L. Tang, Appl. Phys. Lett. 102, 064105 (2013)CrossRefADSGoogle Scholar
  23. 23.
    A. Bibo, M. Daqaq, Appl. Phys. Lett. 104, 023901 (2014)CrossRefADSGoogle Scholar
  24. 24.
    H.J. Jung, S.W. Lee, Smart Mater. Struct. 20, 055022 (2011)CrossRefADSGoogle Scholar
  25. 25.
    A. Abdelkefi, A. Hasanyan, J. Montgomery, D. Hall, M.R. Hajj, Theor. Appl. Mech. Lett. 4, 022002 (2014)CrossRefGoogle Scholar
  26. 26.
    A. Abdelkefi, A.H. Nayfeh, M.R. Hajj, Nonlinear Dyn. 67, 925 (2011)MathSciNetCrossRefGoogle Scholar
  27. 27.
    A. Abdelkefi, M.R. Hajj, A.H. Nayfeh, Nonlinear Dyn. 70, 1377 (2012)MathSciNetCrossRefGoogle Scholar
  28. 28.
    J. Sirohi, R. Mahadik, ASME J. Vib. Acoust. 134, 1 (2012)CrossRefGoogle Scholar
  29. 29.
    A. Abdelkefi, M.R. Hajj, A.H. Nayfeh, Nonlinear Dyn. 70, 1355 (2012)MathSciNetCrossRefGoogle Scholar
  30. 30.
    A. Abdelkefi, Z. Yan, M.R. Hajj, Smart Mater. Struct. 22(2), 025016 (2013)CrossRefADSGoogle Scholar
  31. 31.
    A. Abdelkefi, Z. Yan, M.R. Hajj, J. Intel. Mater. Syst. Struct. 25, 246 (2014)CrossRefGoogle Scholar
  32. 32.
    D. Zhu, S. Beeby, J. Tudor, N. White, N. Harris, Proc. IEEE Sens. Kona, HI 1, 1415 (2010)Google Scholar
  33. 33.
    C. De Marqui, A. Erturk, J. Intel. Mater. Syst. Struct. 24, 846 (2012)Google Scholar
  34. 34.
    J.A.C. Dias, C. De Marqui, A. Erturk, AIAA J. (2014)Google Scholar
  35. 35.
    J.A.C. Dias, C. De Marqui, A. Erturk, Appl. Phys. Lett. 102, 044101 (2013)CrossRefADSGoogle Scholar
  36. 36.
    M. Ali, M. Arafa, M. Elaraby, Proc. World Cong. Eng., WCE , London, UK 3, 5 (2013)Google Scholar
  37. 37.
    D. Vicente-Ludlam, A. Barrero-Gil, A. Velazquez, J. Flui. Struct. (2014) http://dx.doi.org/10.1016/j.jfluidstructs.2014.09.007i
  38. 38.
    H.L. Dai, A. Abdelkefi, U. Javed, L. Wang, Smart Mater. Struct. 24, 045012 (2015)CrossRefADSGoogle Scholar
  39. 39.
    R.D. Belvins, Flow-Induced Vibration Malabar (FL: Krieger, 1990)Google Scholar
  40. 40.
    A. Barrero-Gil, G. Alonso, A. Sanz-Andres, J. Soun. Vib. 329, 2873 (2010)CrossRefADSGoogle Scholar
  41. 41.
    G.V. Parkinson, J.D. Smith, Q. J. Mech. Appl. Math. 17, 225 (1964)CrossRefGoogle Scholar
  42. 42.
    J.D. Kraus, Electromagnetics (McGraw-Hill), p. 420Google Scholar
  43. 43.
    A.H. Nayfeh, Method of Normal Forms (Wiley Interscience, Berlin, 2011)Google Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringNew Mexico State UniversityLas CrucesUSA
  2. 2.Department of MechanicsHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations