The European Physical Journal Special Topics

, Volume 224, Issue 8, pp 1477–1484 | Cite as

Controlling bistability in a stochastic perception model

  • A. N. Pisarchik
  • I. A. Bashkirtseva
  • L. B. Ryashko
Regular Article
Part of the following topical collections:
  1. Multistability: Uncovering Hidden Attractors

Abstract

Using a simple bistable perception model, we demonstrate how coexisting states can be controlled by periodic modulation applied to a control parameter responsible for the interpretation of ambiguous images. Because of stochastic processes in the brain, any percept is statistically recognized and multistability in perception never occurs. A stable periodic orbit created by the control modulation splits in two limit cycles in an inverse gluing bifurcation, which occurs when the modulation frequency increases. The statistical analysis of transitions between the coexisting states in the presence of noise reveals conditions under which an ambiguous image can be interpreted in a desired way determined by the control.

Keywords

European Physical Journal Special Topic Noise Intensity Stable Limit Cycle Necker Cube Weak Noise 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.N. Pisarchik, U. Feudel, Phys. Rep. 540, 167 (2012)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    B. Blazejczyk-Okolewska, T. Kapitaniak, Chaos, Solitons Fractals 9, 1439 (1998)ADSCrossRefMATHGoogle Scholar
  3. 3.
    A. Chudzik, P. Perlikowski, A. Stefanski, T. Kapitaniak, Int. J. Bifurcat. Chaos 21, 1907 (2011)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    D.J. Tolhurst, J.A. Movshon, A.F. Dean, Vision Res. 23, 775 (1983)CrossRefGoogle Scholar
  5. 5.
    L.A. Necker, The London and Edinburgh Philosophical Mag. J. Sci. 1, 329 (1832)Google Scholar
  6. 6.
    E. Rubin, Visuell Wahrgenommene Figuren (Glydenalske Boghandel, Copenhagen, 1921)Google Scholar
  7. 7.
    M. Nawrot, R. Blake, Science 244, 716 (1989)ADSCrossRefGoogle Scholar
  8. 8.
    G. Huguet, J. Rinzel, J.-M. Hupé, J. Vision 14, 19 (2014)CrossRefGoogle Scholar
  9. 9.
    N. Kogo, A. Galli, J. Wagemans, Vision Res. 51, 2085 (2011)CrossRefGoogle Scholar
  10. 10.
    P. Sterzer, A. Kleinschmidt, G. Rees, Trends Cognitive Sci. 13, 310 (2009)CrossRefGoogle Scholar
  11. 11.
    M.A. Goodale, Proc. R. Soc. B 281, 20140337 (2014)CrossRefGoogle Scholar
  12. 12.
    W.T. Powers, Behavior: The control of perception (Benchmark, New Canaan, 2005)Google Scholar
  13. 13.
    M. Meng, F. Tong, J. Vision 4, 539 (2006)Google Scholar
  14. 14.
    A.N. Pisarchik, Phys. Lett. A 242, 152 (1998)MathSciNetADSCrossRefMATHGoogle Scholar
  15. 15.
    I. Bashkirtseva, L. Ryashko, Phys. Rev. E 79, 041106 (2009)MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    I. Bashkirtseva, G. Chen, L. Ryashko, Chaos 22, 033104 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    A.N. Pisarchik, R. Jaimes-Reátegui, C.D.A. Magallón-García, C.O. Castillo-Morales, Biol. Cybernetics 108, 397 (2014)CrossRefGoogle Scholar
  18. 18.
    R. Moreno-Bote, J. Rinzel, N. Rubin, J. Neurophysiol. 98, 11251139 (2007)CrossRefGoogle Scholar
  19. 19.
    J.M. Gambaudo, P. Glendinning, C. Tresser, Nonlinearity 1, 203 (1988)MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    L. Gammaitoni, P. Hanggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    M. Riani, E. Simonotto, Nuovo Cimento Soc. Ital. Fis. D 17, 903 (1995)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • A. N. Pisarchik
    • 1
    • 2
  • I. A. Bashkirtseva
    • 3
  • L. B. Ryashko
    • 3
  1. 1.Centro de Investigaciones en OpticaLeon, GuanajuatoMexico
  2. 2.Computational Systems Biology, Center for Biomedical TechnologyTechnical University of Madrid, Campus MontegancedoMadridSpain
  3. 3.Institute of Mathematics and Computer SciencesUral Federal UniversityEkaterinburgRussia

Personalised recommendations