The European Physical Journal Special Topics

, Volume 224, Issue 7, pp 1303–1324 | Cite as

Large density expansion of a hydrodynamic theory for self-propelled particles

Regular Article
Part of the following topical collections:
  1. Statistical Physics of Self-Propelled Particles


Recently, an Enskog-type kinetic theory for Vicsek-type models for self-propelled particles has been proposed [T. Ihle, Phys. Rev. E 83, 030901 (2011)]. This theory is based on an exact equation for a Markov chain in phase space and is not limited to small density. Previously, the hydrodynamic equations were derived from this theory and its transport coefficients were given in terms of infinite series. Here, I show that the transport coefficients take a simple form in the large density limit. This allows me to analytically evaluate the well-known density instability of the polarly ordered phase near the flocking threshold at moderate and large densities. The growth rate of a longitudinal perturbation is calculated and several scaling regimes, including three different power laws, are identified. It is shown that at large densities, the restabilization of the ordered phase at smaller noise is analytically accessible within the range of validity of the hydrodynamic theory. Analytical predictions for the width of the unstable band, the maximum growth rate, and for the wave number below which the instability occurs are given. In particular, the system size below which spatial perturbations of the homogeneous ordered state are stable is predicted to scale with where √M is the average number of collision partners. The typical time scale until the instability becomes visible is calculated and is proportional to M.


Dispersion Relation European Physical Journal Special Topic Hydrodynamic Equation Unstable Mode Large Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Vicsek, A. Zafeiris, Phys. Rep. 517, 71 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    S. Ramaswamy, Annu. Rev. Condens. Matter Phys. 1, 323 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    M.C. Marchetti, et al., Rev. Mod. Phys. 85, 1143 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    G. Rückner, R. Kapral, Phys. Rev. Lett. 98, 150603 (2007)CrossRefGoogle Scholar
  5. 5.
    D. Humphrey, et al., Nature 416, 413 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    M. Rubenstein, A. Cornejo, R. Nagpal, Science 345, 795 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    S. Wilson, et al., Swarm Intell. 8, 303 (2014)CrossRefGoogle Scholar
  8. 8.
    T. Vicsek, et al., Phys. Rev. Lett. 75, 1226 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    A. Czirók, H.E. Stanley, T. Vicsek, J. Phys. A 30, 1375 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    H. Levine, W.-J. Rappel, I. Cohen, Phys. Rev. E 63, 017101 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    I.D. Couzin, et al., J. theor. Biol. 218, 1 (2002)MathSciNetCrossRefGoogle Scholar
  12. 12.
    F. Thüroff, C.A. Weber, E. Frey, Phys. Rev. Lett. 111, 190601 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    T. Hanke, C.A. Weber, E. Frey, Phys. Rev. E 88, 052309 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    J. Toner, Y. Tu, Phys. Rev. E 58, 4828 (1998)MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    J. Toner, Phys. Rev. E 86, 031918 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    K. Kruse, et al., Eur. Phys. J. E 16, 5 (2005)CrossRefGoogle Scholar
  17. 17.
    I.S. Aranson, L.S. Tsimring, Phys. Rev. E 71, 050901 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    T. Ihle, Phys. Rev. E 83, 030901 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    T. Ihle, [arXiv:1006.1825v1] (old version of Ref. [18])
  20. 20.
    T. Ihle, Phys. Rev. E 88, 040303 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    T. Ihle, Eur. Phys. J. Special Topics 223, 1293 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    T. Ihle, Eur. Phys. J. Special Topics 223, 1423 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    A. Peshkov, E. Bertin, F. Ginelli, H. Chaté, Eur. Phys. J. Special Topics 223, 1315 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    T. Ihle, Eur. Phys. J. Special Topics 223, 1427 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    E. Bertin, et al., Eur. Phys. J. Special Topics 223, 1419 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    Y.-L. Chou, R. Wolfe, T. Ihle, Phys. Rev. E 86, 021120 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    M. Romensky, V. Lobaskin, T. Ihle, Phys. Rev. E 90, 063315 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    E. Bertin, M. Droz, G. Grégoire, Phys. Rev. E 74, 022101 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    E. Bertin, M. Droz, G. Grégoire, J. Phys. A 42, 445001 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    R. Großmann, L. Schimansky-Geier, P. Romanczuk, New J. Phys. 15, 085014 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    M. Romenskyy, V. Lobaskin, Eur. Phys. J.B 86, 91 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    G. Grégoire, H. Chaté, Phys. Rev. Lett. 92 025702 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    H. Chaté, F. Ginelli, G. Grégoire, F. Raynaud, Phys. Rev. E 77 046113 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    Y.L. Chou, T. Ihle, Phys. Rev. E 91, 022103 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    T. Ihle, Phys. Chem. Chem. Phys. 11, 9667 (2009)CrossRefGoogle Scholar
  36. 36.
    A. Peshkov, S. Ngo, E. Bertin, H. Chaté, F. Ginelli, Phys. Rev. Lett. 109, 098101 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    S. Mishra, A. Baskaran, M.C. Marchetti, Phys. Rev. E 81, 061916 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    A.M. Menzel, Phys. Rev. E 85, 021912 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    P. Romanczuk, L. Schimansky-Geier, Ecol. Complex. 10, 83 (2012)CrossRefGoogle Scholar
  40. 40.
    R.W. Tegeder, J. Krause, Philos. Trans. R. Soc. London B 350, 381 (1995)ADSCrossRefGoogle Scholar
  41. 41.
    M. Ballerini, et al., Proc. Natl. Acad. Sci. USA 105, 1232 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    M. Ballerini, Anim. Behav., et al., Proc. Natl. Acad. Sci. USA 76, 201 (2008)Google Scholar
  43. 43.
    G. Baglietto, E.V. Albano, Phys. Rev. E 78, 021125 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    G. Baglietto, E.V. Albano, Phys. Rev. E 80, 050103 (2009)ADSCrossRefGoogle Scholar
  45. 45.
    M. Nagy, I. Daruka, T. Vicsek, Physica A 373, 445 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    T. Ihle (unpublished)Google Scholar
  47. 47.
    A. Peshkov, I.S. Aranson, E. Bertin, H. Chaté, F. Ginelli, Phys. Rev. Lett. 109, 268701 (2012)ADSCrossRefGoogle Scholar
  48. 48.
    In this context, “enslaved” means that the higher order coefficients are functionals of the lower Fourier coefficients g0,g1,h0,h1, and depend only indirectly on space and time through the temporal and spatial variations of these lower order coefficientsGoogle Scholar
  49. 49.
    The critical noise ηC goes to 2π for M → ∞, [18]. η = 2π means that particle directions are completely randomized in every iteration, and all memory of previous orientations is destroyed: particles just perform independent random walks. Ring-kinetic theory [34] predicts that for η = 2π the common prefactor of the amplification factor for connected correlation functions becomes zero. Thus, even for η slightly smaller than 2π, correlations will be strongly dampedGoogle Scholar
  50. 50.
    Note, that for M ≫ 1, the restriction to large mean free path is not a major restriction. It just leads to an easier evaluation of the transport coefficients but, in principle, can be removed by including the effects of collisional momentum transfer, as shown in Ref. [35]Google Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  1. 1.Department of PhysicsNorth Dakota State UniversityFargoUSA

Personalised recommendations