Advertisement

The European Physical Journal Special Topics

, Volume 224, Issue 5, pp 947–968 | Cite as

Extended local equilibrium approach to stochastic thermodynamics

  • Y. De Decker
  • A. Garcia Cantú Ros
  • G. Nicolis
Regular Article
Part of the following topical collections:
  1. Discussion and Debate: The Carnot Principle Revisited: Towards New Extensions?

Abstract

A new approach to stochastic thermodynamics is developed, in which the local equilibrium hypothesis is extended to incorporate the effect of fluctuations. A fluctuating entropy in the form of a random functional of the fluctuating state variables is introduced, whose balance equation allows to identify the stochastic entropy flux and stochastic entropy production. The statistical properties of these quantities are analyzed and illustrated on representative examples.

Keywords

Entropy European Physical Journal Special Topic Entropy Production Nonequilibrium Thermodynamic Thermodynamic Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.R. de Groot, P. Mazur, Non-equilibrium Thermodynamics (Dover Publications, 2011)Google Scholar
  2. 2.
    P. Glansdorff, I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations (John Wiley & Sons, 1971)Google Scholar
  3. 3.
    F. Schlögl, Z. Phys. B 20, 177 (1975)ADSCrossRefGoogle Scholar
  4. 4.
    F. Schlögl, Z. Phys. 248, 446 (1971)ADSCrossRefGoogle Scholar
  5. 5.
    L. Jiu-Li, C. Van den Broeck, G. Nicolis, Z. Phys. B - Condensed Matter 56, 165 (1984)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    C.Y. Mou, L. Jiu-li, G. Nicolis, J. Chem. Phys. 84, 7011 (1986)ADSCrossRefGoogle Scholar
  7. 7.
    M. Esposito, U. Harbola, S. Mukamel, Rev. Mod. Phys. 81, 1665 (2009)MATHMathSciNetADSCrossRefGoogle Scholar
  8. 8.
    H. Ge, Phys. Rev. E 80, 021137 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    M. Santillán, H. Qian, Phys. Rev. E 83, 041130 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    C. Van den Broeck, Proceedings of the International School “Enrico Fermi” 184, 155 (2013)Google Scholar
  11. 11.
    U. Seifert, Rep. Prog. Phys. 75, 126001 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, 1987)Google Scholar
  13. 13.
    C.W. Gardiner, Stochastic Methods, 4th ed., Springer Series in Synergetics 13 (2009)Google Scholar
  14. 14.
    D.T. Gillespie, Markov Processes: An Introduction for Physical Scientists (Academic Press, 1991)Google Scholar
  15. 15.
    N.G. van Kampen, Stochastic Processes in Physics and Chemistry, 3rd edn. (North-Holland, 2007)Google Scholar
  16. 16.
    H. Touchette, Phys. Rep. 478, 1 (2009)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    G. Gallavotti, E.G.D. Cohen, Phys. Rev. Lett. 74, 2694 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    P. Gaspard, J. Chem. Phys. 120, 8898 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    R. Kubo, Rep. Prog. Phys. 29, 255 (1966)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • Y. De Decker
    • 1
    • 2
  • A. Garcia Cantú Ros
    • 3
  • G. Nicolis
    • 1
  1. 1.Center for Nonlinear Phenomena and Complex Systems (CENOLI)Université libre de Bruxelles (ULB)BrusselsBelgium
  2. 2.Nonlinear Physical Chemistry UnitUniversité libre de Bruxelles (ULB)BrusselsBelgium
  3. 3.Potsdam Institute for Climate Impact ResearchPotsdamGermany

Personalised recommendations