The European Physical Journal Special Topics

, Volume 224, Issue 3, pp 565–569 | Cite as

Density functional theory of a trapped Bose gas with tunable scattering length: From weak-coupling to unitarity

  • M. Rossi
  • F. Ancilotto
  • L. Salasnich
  • F. Toigo
Regular Article
Part of the following topical collections:
  1. Novel Quantum Phases and Mesoscopic Physics in Quantum Gases

Abstract

We study an interacting Bose gas at T = 0 under isotropic harmonic confinement within Density Functional Theory in the Local Density approximation. The energy density functional, which spans the whole range of positive scattering lengths up to the unitary regime (infinite scattering length), is obtained by fitting the recently calculated Monte Carlo bulk equation of state [Phys. Rev. A 89, 041602(R) (2014)]. We compare the density profiles of the trapped gas with those obtained by MC calculations. We solve the time-dependent Density Functional equation to study the effect of increasing values of the interaction strength on the frequencies of monopole and quadrupole oscillations of the trapped gas. We find that the monopole breathing mode shows a non-monotonous behavior as a function of the scattering length. We also consider the damping effect of three-body losses on such modes.

Keywords

Monte Carlo European Physical Journal Special Topic Local Density Approximation Monte Carlo Result Monte Carlo Data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Li, T.-L. Ho, Phys. Rev. Lett. 108, 195301 (2012)CrossRefADSGoogle Scholar
  2. 2.
    B.S. Rem, A.T. Grier, I. Ferrier-Barbut, U. Eismann, T. Langen, N. Navon, L. Khaykovich, F. Werner, D.S. Petrov, F. Chevy, C. Salomon, Phys. Rev. Lett. 110, 163202 (2013)CrossRefADSGoogle Scholar
  3. 3.
    P. Makotyn, C.E. Klauss, D.L. Goldberger, E.A. Cornell, D.S. Jin, Nat. Phys. 10, 116 (2014)CrossRefGoogle Scholar
  4. 4.
    R.J. Fletcher, A.L. Gaunt, N. Navon, R.P. Smith, Z. Hadzibabic, Phys. Rev. Lett. 111, 125302 (2013)CrossRefADSGoogle Scholar
  5. 5.
    M. Rossi, L. Salasnich, F. Ancilotto, F. Toigo, Phys. Rev. A 89, 041602(R) (2014)CrossRefADSGoogle Scholar
  6. 6.
    W. Kohn, L.J. Sham, Phys. Rev. 140, A 1133 (1965)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984)CrossRefADSGoogle Scholar
  8. 8.
    E. Lipparini, Modern Many-Particle Physics: Atomic Gases, Nanoparticles and Quantum Liquids, 2nd Ed. (World Scientific, Singapore, 2008)Google Scholar
  9. 9.
    M.L. Chiofalo, M.P. Tosi, Europh. Lett. 56, 326 (2001)CrossRefADSGoogle Scholar
  10. 10.
    N.N. Bogoliubov, J. Phys. (USSR) 11, 23 (1947)Google Scholar
  11. 11.
    T.D. Lee, K. Huang, C.N. Yang, Phys. Rev. 106, 1135 (1957)CrossRefADSMATHMathSciNetGoogle Scholar
  12. 12.
    The coefficients c’s have been determined by ensuring continuity of the interpolating function and of its first three derivatives at x = 0.3 and x = 0.5 once a3 and the coefficients b’s have been fitted to the calculated values. This procedures automatically reproduces the MC values in the interval 0.3 < x < 0.5Google Scholar
  13. 13.
    E.P. Gross, Nuovo Cimento 20, 454 (1961)CrossRefMATHGoogle Scholar
  14. 14.
    L.P. Pitaevskii, Sov. Phys. JETP 13, 451 (1961)MathSciNetGoogle Scholar
  15. 15.
    J.L. DuBois, H.R. Glyde, Phys. Rev. A 63, 023602 (2001)CrossRefADSGoogle Scholar
  16. 16.
    L.P. Pitaevskii, S. Stringari, Bose-Einstein Condensation (Oxford Univ. Press, Oxford, 2003)Google Scholar
  17. 17.
    Y. Castin, Comptes Rendus Phys. 5, 407 (2004)CrossRefADSGoogle Scholar
  18. 18.
    T. Lahaye, J. Metz, B. Frolich, T. Koch, M. Meister, A. Griesmaier, T. Pfau, H. Saito, Y. Kawaguchi, M. Ueda, Phys. Rev. Lett. 101, 080401 (2008)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • M. Rossi
    • 1
  • F. Ancilotto
    • 1
    • 2
  • L. Salasnich
    • 1
    • 3
  • F. Toigo
    • 1
    • 2
  1. 1.Dipartimento di Fisica e Astronomia “Galileo Galilei” and CNISMUniversità di PadovaPadovaItaly
  2. 2.CNR-IOM DemocritosTriesteItaly
  3. 3.CNR-INOSesto FiorentinoItaly

Personalised recommendations