The European Physical Journal Special Topics

, Volume 224, Issue 2, pp 401–413 | Cite as

Numerical simulation of particle-laden droplet evaporation with the Marangoni effect

Regular Article
Part of the following topical collections:
  1. IMA7 – Interfacial Fluid Dynamics and Processes


A comprehensive numerical method for analysis of the evaporation of a particle-laden microdroplet is developed including the effects of heat and mass transfer, phase change, dynamic contact angles, Marangoni force, and particle concentration. A level-set method, which can easily handle the liquid-gas interface with change in topology, is employed to solve the conservation equations of mass, momentum and energy in the liquid and gas phases, vapor concentration in the gas phase, and particle concentration in the liquid phase with sharp-interface numerical techniques for the boundary conditions at the interface. The numerical method is applied to microdroplet evaporation on a solid surface to investigate the Marangoni effect on the droplet evaporation and particle distribution.


Contact Angle Direct Numerical Simulation European Physical Journal Special Topic Contact Line Liquid Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Nature 389, 827 (1997)CrossRefADSGoogle Scholar
  2. 2.
    B.J. Fischer, Langmuir 18, 60 (2002)CrossRefGoogle Scholar
  3. 3.
    E. Widjaja, M.T. Harris, AICHE J. 54, 2250 (2008)CrossRefGoogle Scholar
  4. 4.
    R. Bhardwaj, X. Fang, D. Attinger, New J. Phys. 11, 075020 (2009)CrossRefADSGoogle Scholar
  5. 5.
    K.L. Maki, S. Kumar, Langmuir 27, 11347 (2011)CrossRefGoogle Scholar
  6. 6.
    M. Fujita, O. Koike, Y. Yamaguchi, J. Comput. Phys. 281, 421 (2015)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    G. Son, J. Mech. Sci. Technol. 24, 991 (2009)CrossRefMathSciNetGoogle Scholar
  8. 8.
    G. Son, J. Heat Transfer 134, 101502 (2012)CrossRefGoogle Scholar
  9. 9.
    G. Son, Int. Commun. Heat Mass Transfer 58, 156 (2014)CrossRefGoogle Scholar
  10. 10.
    J. Lee, G. Son, Numer. Heat Transfer B 67, 25 (2015)CrossRefADSGoogle Scholar
  11. 11.
    V. Babin, R. Holyst, J. Phys. Chem. B 109, 11367 (2005)CrossRefGoogle Scholar
  12. 12.
    R. Holyst, M. Litniewski, D. Jakubczyk, M. Zientara, M. Wozniak, Soft Matter 9, 7766 (2013)CrossRefADSGoogle Scholar
  13. 13.
    R. Holyst, M. Litniewski, D. Jakubczyk, K. Kolwas, M. Kolwas, K. Kowalski, S. Migacz, S. Palesa, M. Zientara, Rep. Prog. Phys. 76, 034601 (2013)CrossRefADSGoogle Scholar
  14. 14.
    M. Kang, R.P. Fedkiw, X.-D. Liu, J. Sci. Comput. 15, 323 (2000)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    D.Q. Nguyen, R.P. Fedkiw, M. Kang, J. Comput. Phys. 172, 71 (2001)CrossRefADSMATHMathSciNetGoogle Scholar
  16. 16.
    F. Gibou, R.P. Fedkiw, L.T Cheng, M. Kang, J. Comput. Phys. 176, 205 (2002)CrossRefADSMATHMathSciNetGoogle Scholar
  17. 17.
    I.M. Krieger, Adv. Colloid Interface Sci. 3, 111 (1972)CrossRefGoogle Scholar
  18. 18.
    A.A. Potanin, J. Colloid Interface Sci. 157, 399 (1993)CrossRefGoogle Scholar
  19. 19.
    L. Daubersies, J.-B. Salmon, Phys. Rev. E 84, 031406 (2011)CrossRefADSGoogle Scholar
  20. 20.
    S.S.L. Peppin, J.A.W. Elliott, M.G. Worster, J. Fluid Mech. 554, 147 (2006)CrossRefADSMATHMathSciNetGoogle Scholar
  21. 21.
    G.P. Sasmal, J.I. Hochstein, J. Fluids Eng. 116, 577 (1994)CrossRefGoogle Scholar
  22. 22.
    J.-J. Xu, W. Ren, J. Comput. Phys. 263, 71 (2014)CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    M. Sussman, M. Ohta, SIAM J. Sci. Comput. 31, 2447 (2009)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    M. Sussman, Int. J. Numer. Meth. Fluids 68, 1343 (2012)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    J. Fukai, Y. Shiiba, T. Yamamoto, O Miyatake, O. Poulikakos, C.M. Megaridis, Z. Zhao, Phys. Fluids 7, 236 (1995)CrossRefADSGoogle Scholar
  26. 26.
    F.I. ThomasJr., E.L. Peter, Steam and Gas Tables with Computer Equations (Academic Press, 1984)Google Scholar
  27. 27.
    T. Lim, S. Han, J. Chung, J.T. Chung, S. Ko, C.P. Grigoropoulos, Int. J. Heat Mass Transfer 52, 431 (2009)CrossRefGoogle Scholar
  28. 28.
    H. Hu, R.G. Larson, Int. J. Phys. Chem. B 110, 7090 (2006)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringSogang UniversitySeoulSouth Korea

Personalised recommendations