The European Physical Journal Special Topics

, Volume 224, Issue 1, pp 35–49 | Cite as

Fast quantum methods for optimization

  • S. Boixo
  • G. Ortiz
  • R. Somma
Review
Part of the following topical collections:
  1. Quantum Annealing: The Fastest Route to Quantum Computation?

Abstract

Discrete combinatorial optimization consists in finding the optimal configuration that minimizes a given discrete objective function. An interpretation of such a function as the energy of a classical system allows us to reduce the optimization problem into the preparation of a low-temperature thermal state of the system. Motivated by the quantum annealing method, we present three strategies to prepare the low-temperature state that exploit quantum mechanics in remarkable ways. We focus on implementations without uncontrolled errors induced by the environment. This allows us to rigorously prove a quantum advantage. The first strategy uses a classical-to-quantum mapping, where the equilibrium properties of a classical system in d spatial dimensions can be determined from the ground state properties of a quantum system also in d spatial dimensions. We show how such a ground state can be prepared by means of quantum annealing, including quantum adiabatic evolutions. This mapping also allows us to unveil some fundamental relations between simulated and quantum annealing. The second strategy builds upon the first one and introduces a technique called spectral gap amplification to reduce the time required to prepare the same quantum state adiabatically. If implemented on a quantum device that exploits quantum coherence, this strategy leads to a quadratic improvement in complexity over the well-known bound of the classical simulated annealing method. The third strategy is not purely adiabatic; instead, it exploits diabatic processes between the low-energy states of the corresponding quantum system. For some problems it results in an exponential speedup (in the oracle model) over the best classical algorithms.

Keywords

European Physical Journal Special Topic Hamiltonian Path Gibbs Distribution Detailed Balance Condition Fast Route 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, A. Schrijver, Combinatorial Optimization (John Wiley and Sons, New York, 1998)Google Scholar
  2. 2.
    S. Kirkpatrick, C.D. Gelett, M.P. Vecchi, Science 220, 671 (1983)Google Scholar
  3. 3.
    M.E.J. Newman, G.T. Barkema, Monte Carlo Methods in Statistical Physics (Oxford University Press, Oxford, UK, 1999)Google Scholar
  4. 4.
    V. Černý, J. Optim. Theory Appl. 45, 41 (1985)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    S.V. Isakov, I.N. Zintchenko, T.F. Rønnow, M. Troyer, Optimised Simulated Annealing for Ising Spin Glasses, [arXiv:1401.1084]
  6. 6.
    P.W. Shor, SIAM J. Sci. Statist. Comput. 26, 1484 (1997)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Chem. Phys. Lett. 219, 343 (1994)ADSCrossRefGoogle Scholar
  8. 8.
    A. Das, B.K. Chakrabarti, Quantum Annealing and Related Optimization Methods (Springer Verlag, Berlin, 2005)Google Scholar
  9. 9.
    T. Kadowaki, H. Nishimori, Phys. Rev. E 58, 5355 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, Science 292, 472 (2001)ADSCrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    S. Boixo, E. Knill, R.D. Somma, Fast Quantum Algorithms for Traversing Paths of Eigenstates, [arXiv:1005.3034]
  12. 12.
    G.E. Santoro, E. Tosatti, J. Phys. A: Math. Gen. 39, R393 (2006)ADSCrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    M. Lewenstein, A. Sanpera, V. Ahunger, B. Damski, A. Sende, U. Sen., Adv. Phys. 56, 243 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    S. Boixo, T.F. Rønnow, S.V. Isakov, Z. Wang, D. Wecker, D.A. Lidar, J.M. Martinis, M. Troyer, Nat. Phys. 10, 218 (2014)CrossRefGoogle Scholar
  15. 15.
    S.W. Shin, G. Smith, J.A. Smolin, U. Vazirani, [arXiv:1401.7087]
  16. 16.
    T.F. Rønnow, Z. Wang, J. Job, S. Boixo, S.V. Isakov, D. Wecker, J.M. Martinis, D.A. Lidar, M. Troyer, Science 345, 420 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Science 295, 2427 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    J. Brooke, D. Bitko, T.F. Rosenbaum, G. Aeppli, Science 284, 779 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    D. Bohm, Quantum Theory (Prentice-Hall, New York, 1951)Google Scholar
  20. 20.
    A. Messiah, Quantum Mechanics (Wiley, New York, 1976)Google Scholar
  21. 21.
    G. Rigolin, G. Ortiz, V.H. Ponce, Phys. Rev. A 78, 052508 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    G. Rigolin, G. Ortiz, Phys. Rev. Lett. 104, 170406 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    G. Rigolin, G. Ortiz, Phys. Rev. A 85, 062111 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    G. Rigolin, G. Ortiz, Phys. Rev. A 90, 022104 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    E. Torrontegui, S. Ibanez, S. Martinez-Garaot, M. Modugno, A. del Campo, D. Guery-Odelin, A. Ruschhaupt, X. Chen, J.G. Muga, Adv. At. Mol. Opt. Phys. 62, 117 (2013)CrossRefGoogle Scholar
  26. 26.
    R.D. Somma, C.D. Batista, G. Ortiz, Phys. Rev. Lett. 99, 030603 (2007)ADSCrossRefMathSciNetGoogle Scholar
  27. 27.
    R.D. Somma, C.D. Batista, G. Ortiz, J. Phys.: Conf Ser. 95, 012020 (2008)ADSGoogle Scholar
  28. 28.
    R.D. Somma, C.D. Batista, G. Ortiz, in Quantum Information and Many-Body Quantum Systems, edited by M. Ericsson (Edizioni della Normale, Pisa, 2008)Google Scholar
  29. 29.
    R.D. Somma, S. Boixo, H. Barnum, E. Knill, Phys. Rev. Lett. 101, 130504 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    R.D. Somma, G. Ortiz, in Quantum Quenching, Annealing and Computation, edited by. A.K. Chandra, A.K. Das, B.K. Chakrabarti (Springer, Heidelberg, 2010)Google Scholar
  31. 31.
    R.D. Somma, S. Boixo, SIAM J. Comp. 42, 593 (2013)CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    D.W. Stroock, An Introduction to Markov Processes (Springer Verlag, Berlin, 2005)Google Scholar
  33. 33.
    R.D. Somma, D. Nagaj, M. Kieferova, Phys. Rev. Lett. 109, 050501 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    A.M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, D. Spielman, in Proceedings of the 35th Annual ACM Symposium on Theory of Computing (ACM, San Diego, CA, 2003), p. 59Google Scholar
  35. 35.
    E. Crosson, E. Farhi, C. Yen-Yu Lin, H-H. Lin, P. Shor, Different Strategies for Optimization Using the Quantum Adiabatic Algorithm, [arXiv:1401.7320] (2014)
  36. 36.
    C.L. Henley, J. Phys. Condens. Matter 16, S891 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    C. Castelnovo, et al., Ann. Phys. (N.Y.) 318, 316 (2005)ADSCrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    F. Verstraete, et al., Phys. Rev. Lett. 96, 220601 (2006)ADSCrossRefMathSciNetGoogle Scholar
  39. 39.
    S. Boixo, E. Knill, R.D. Somma, Quantum Inf. Comp. 9, 833 (2009)MATHMathSciNetGoogle Scholar
  40. 40.
    S. Jansen, M. Ruskai, R. Seiler, J. Math. Phys. 48, 102111 (2007)ADSCrossRefMathSciNetGoogle Scholar
  41. 41.
    S. Jordan, Quantum Computation Beyond the Circuit Model (Massachusetts Institute of Technology, 2008)Google Scholar
  42. 42.
    E. Hopf, J. Math. Mech. 12, 683 (1963)MATHMathSciNetGoogle Scholar
  43. 43.
    S. Geman, D. Geman, IEEE Trans. Pattern Anal. Mach. Intell. 6, 721 (1984)CrossRefMATHGoogle Scholar
  44. 44.
    H.T. Chiang, G. Xu, R. Somma Phys. Rev. A 89, 012314 (2014)ADSCrossRefGoogle Scholar
  45. 45.
    S. Morita, H. Nishimori, J. Phys. A: Math. Gen. 39, 13903 (2006)ADSCrossRefMATHMathSciNetGoogle Scholar
  46. 46.
    S. Morita, H. Nishimori, J. Math. Phys. 49, 125210 (2008)ADSCrossRefMathSciNetGoogle Scholar
  47. 47.
    V. Vizing, Diskret. Analiz. 3, 25 (1964)MathSciNetGoogle Scholar
  48. 48.
    D.W. Berry, A.M. Childs, R. Cleve, R. Kothari, R.D. Somma, Proc. of the 46th ACM Symp. on Theory of Comp. (STOC 2014), p. 283Google Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  • S. Boixo
    • 1
  • G. Ortiz
    • 2
  • R. Somma
    • 3
  1. 1.Google Quantum A.I. LabsVeniceUSA
  2. 2.Department of PhysicsIndiana UniversityBloomingtonUSA
  3. 3.Theoretical Division, Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations