Skip to main content
Log in

The exit-time problem for a Markov jump process

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The purpose of this paper is to consider the exit-time problem for a finite-range Markov jump process, i.e, the distance the particle can jump is bounded independent of its location. Such jump diffusions are expedient models for anomalous transport exhibiting super-diffusion or nonstandard normal diffusion. We refer to the associated deterministic equation as a volume-constrained nonlocal diffusion equation. The volume constraint is the nonlocal analogue of a boundary condition necessary to demonstrate that the nonlocal diffusion equation is well-posed and is consistent with the jump process. A critical aspect of the analysis is a variational formulation and a recently developed nonlocal vector calculus. This calculus allows us to pose nonlocal backward and forward Kolmogorov equations, the former equation granting the various moments of the exit-time distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Baeumer, M.M. Meerschaert, J. Comput. Appl. Math. 233(10), 2438 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. K. Bogdan, K. Burdzy, Z.-Q. Chen, Probability Theory and Related Fields 127(1), 89 (2003), http://dx.doi.org/10.1007/s00440-003-0275-1

    Article  MATH  MathSciNet  Google Scholar 

  3. N. Burch, R.B. Lehoucq, Phys. Rev. E 83(1), 012105 (2011)

    Article  ADS  Google Scholar 

  4. N. Burch, R.B. Lehoucq, Technical report SAND 2013-2354J, Sandia National Laboratories, 2013

  5. A. Cartea, D. del Castillo-Negrete, Phys. Rev. E 76, 041105 (2007)

    Article  ADS  Google Scholar 

  6. Z.-Q. Chen, M.M. Meerschaert, E. Nane, J. Math. Anal. Appl. 393(2), 479 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. D. del Castillo-Negrete, Phys. Plasmas (1994-present) 13(8), (2006)

  8. M. D’Elia, Q. Du, M. Gunzburger, R.B. Lehoucq, Finite range jump processes and volume-constrained diffusion problems, Technical report SAND 2014-2584J, Sandia National Laboratories, 2014

  9. M. D’Elia, M. Gunzburger, Comput. Math. Appl. 66, 1245 (2013)

    Article  MathSciNet  Google Scholar 

  10. Q. Du, M. Gunzburger, R. Lehoucq, K. Zhou, SIAM Rev. 54(4), 667 (2012), http://dx.doi.org/10.1137/110833294

    Article  MATH  MathSciNet  Google Scholar 

  11. Q. Du, M. Gunzburger, R. Lehoucq, K. Zhou, Math. Mod. Meth. Appl. Sci. 23, 493 (2013), http://dx.doi.org/10.1142/S0218202512500546

    Article  MATH  MathSciNet  Google Scholar 

  12. Q. Du, Z. Huang, R.B. Lehoucq, Discrete and Continuous Dynamical Systems – Series B (DCDS-B) 19(2), 373 (2014), http://dx.doi.org/10.3934/dcdsb.2014.19.373

    Article  MATH  MathSciNet  Google Scholar 

  13. T. Gao, J. Duan, X. Li, R. Song, SIAM J. Sci. Comput. 36, A887 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  14. C. Gardiner, Stochastic Methods: A Handbook for the Natural and Social Sciences, Vol. 13 Springer Series in Synergetics, 3rd edition (Springer, 2004)

  15. M. Gunzburger, R.B. Lehoucq, Multiscale Modeling and Simulation 8, 1581 (2010), http://dx.doi.org/10.1137/090766607

    Article  MATH  MathSciNet  Google Scholar 

  16. D. Holcman, Z. Schuss, SIAM Rev. 56(2), 213 (2014), http://dx.doi.org/10.1137/120898395

    Article  MATH  MathSciNet  Google Scholar 

  17. J. Klafter, I. Sokolov, First Steps in Random Walks: From tools to Applications (Oxford, 2011)

  18. R. Klages, G. Radons, I. Sokolov, Anomalous Transport: Foundations and Applications (Wiley, 2008)

  19. C. Knessl, B. Matkowsky, Z. Schuss, C. Tier, J. Stat. Phys. 45, 245 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. A. Kullberg, D. del Castillo-Negrete, G.J. Morales, J.E. Maggs, Phys. Rev. E 87, 052115 (2013)

    Article  ADS  Google Scholar 

  21. R.B. Lehoucq, M.P. Sears, Phys. Rev. E 84, 031112 (2011), http://dx.doi.org/10.1103/PhysRevE.84.031112

    Article  ADS  Google Scholar 

  22. R.N. Mantegna, H.E. Stanley, Phys. Rev. Lett. 73, 2946 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. P.W. Millar, Annals Probab. 3(2), 215 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  24. T. Naeh, M.M. Klosek, B.J. Matkowsky, Z. Schuss, SIAM J. Appl. Math. 50(2), 595 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  25. S.P. Neuman, D.M. Tartakovsky, Adv. Water Resourc. 32, 670 (2009), http://dx.doi.org/10.1016/j.advwatres.2008.08.005

    Article  ADS  Google Scholar 

  26. F. Sabzikar, M.M. Meerschaert, J. Chen, J. Comput. Phys. (to appear) (2014)

  27. G.H. Weiss, A. Szabo, Phys. A: Stat. Mech. Appl. 119(3), 569 (1983)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. Burch, M. D’Elia or R. B. Lehoucq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burch, N., D’Elia, M. & Lehoucq, R.B. The exit-time problem for a Markov jump process. Eur. Phys. J. Spec. Top. 223, 3257–3271 (2014). https://doi.org/10.1140/epjst/e2014-02331-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2014-02331-7

Keywords

Navigation