Advertisement

The European Physical Journal Special Topics

, Volume 223, Issue 14, pp 3179–3200 | Cite as

Hydrodynamics of DNA confined in nanoslits and nanochannels

  • K. D. Dorfman
  • D. Gupta
  • A. Jain
  • A. Muralidhar
  • D. R. Tree
Review
Part of the following topical collections:
  1. Brownian Motion in Confined Geometries. Guest Editors: S.M. Bezrukov, L. Schimansky-Geier and G. Schmid (Eds.)

Abstract

Modeling the dynamics of a confined, semiflexible polymer is a challenging problem, owing to the complicated interplay between the configurations of the chain, which are strongly affected by the length scale for the confinement relative to the persistence length of the chain, and the polymer-wall hydrodynamic interactions. At the same time, understanding these dynamics are crucial to the advancement of emerging genomic technologies that use confinement to stretch out DNA and “read” a genomic signature. In this mini-review, we begin by considering what is known experimentally and theoretically about the friction of a wormlike chain such as DNA confined in a slit or a channel. We then discuss how to estimate the friction coefficient of such a chain, either with dynamic simulations or via Monte Carlo sampling and the Kirkwood pre-averaging approximation. We then review our recent work on computing the diffusivity of DNA in nanoslits and nanochannels, and conclude with some promising avenues for future work and caveats about our approach.

Keywords

European Physical Journal Special Topic Hydrodynamic Radius Hydrodynamic Interaction Pair Correlation Function Persistence Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Persson, J.O. Tegenfeldt, Chem. Soc. Rev. 39, 985 (2010)Google Scholar
  2. 2.
    W. Reisner, J.N. Pedersen, R.H. Austin, Rep. Prog. Phys. 75, 106601 (2012)ADSGoogle Scholar
  3. 3.
    K.D. Dorfman, S.B. King, D.W. Olson, J.D.P. Thomas, D.R. Tree, Chem. Rev. 113, 2584 (2013)Google Scholar
  4. 4.
    D.R. Tree, Y. Wang, K.D. Dorfman, Phys. Rev. Lett. 108, 228105 (2012)ADSGoogle Scholar
  5. 5.
    L. Dai, D.R. Tree, J.R.C. van der Maarel, K.D. Dorfman, P.S. Doyle, Phys. Rev. Lett. 110, 168105 (2013)ADSGoogle Scholar
  6. 6.
    D. Stigter, J. Colloid Interface Sci. 53, 296 (1975)Google Scholar
  7. 7.
    D. Stigter, Biopolymers 16, 1435 (1977)Google Scholar
  8. 8.
    C.C. Hsieh, A. Balducci, P.S. Doyle, Nano Lett. 8, 1683 (2008)ADSGoogle Scholar
  9. 9.
    Y. Wang, D.R. Tree, K.D. Dorfman, Macromolecules 44, 5694 (2011)Google Scholar
  10. 10.
    D.R. Tree, A. Muralidhar, P.S. Doyle, K.D. Dorfman, Macromolecules 46, 8369 (2013)ADSGoogle Scholar
  11. 11.
    C. Bustamante, J.F. Marko, E.D. Siggia, S. Smith, Science 265, 1599 (1994)ADSGoogle Scholar
  12. 12.
    N. Fakhri, F.C. MacKintosh, B. Lounis, L. Cognet, M. Pasquali, Science 330, 1804 (2010)ADSGoogle Scholar
  13. 13.
    A.V. Dobrynin, Macromolecules 39, 9519 (2006)ADSGoogle Scholar
  14. 14.
    D.E. Smith, T.T. Perkins, S. Chu, Macromolecules 29, 1372 (1996)ADSGoogle Scholar
  15. 15.
    M.L. Mansfield, J.F. Douglas, Soft Matter 9, 8914 (2013)ADSGoogle Scholar
  16. 16.
    L. Nyberg, F. Persson, B. Akerman, F. Westerlund, Nucleic Acids Res. 41, e184 (2013)Google Scholar
  17. 17.
    D.C. Schwartz, C.R. Cantor, Cell 37, 67 (1984)Google Scholar
  18. 18.
    R.T. Kovacic, L. Comai, A.J. Bendich, Nucleic Acids Res. 23, 3999 (1995)Google Scholar
  19. 19.
    N. Clisby, Phys. Rev. Lett. 104, 055702 (2010)ADSGoogle Scholar
  20. 20.
    P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, NY, 1979)Google Scholar
  21. 21.
    M. Daoud, P.G. de Gennes, J. Phys. (Paris) 38, 85 (1977)Google Scholar
  22. 22.
    T. Odijk, Macromolecules 16, 1340 (1983)ADSGoogle Scholar
  23. 23.
    D.R. Tree, W.F. Reinhart, K.D. Dorfman, Macromolecules 47, 3672 (2014)ADSGoogle Scholar
  24. 24.
    W. Reisner, J.P. Beech, N.B. Larsen, H. Flyvbjerg, A. Kristensen, J.O. Tegenfeldt, Phys. Rev. Lett. 99, 058302 (2007)ADSGoogle Scholar
  25. 25.
    K. Jo, D.M. Dhingra, T. Odijk, J.J. de Pablo, M.D. Graham, R. Runnheim, D. Forrest, D.C. Schwartz, Proc. Natl. Acad. Sci. USA 104, 2673 (2007)ADSGoogle Scholar
  26. 26.
    Y. Kim, K.S. Kim, K.L. Kounovsky, R. Chang, G.Y. Jung, J.J. de Pablo, K. Jo, D.C. Schwartz, Lab Chip 11, 1721 (2011)Google Scholar
  27. 27.
    E.T. Lam, A. Hastie, C. Lin, D. Ehrlich, S.K. Das, M.D. Austin, P. Deshpande, H. Cao, N. Nagarajan, M. Xiao, et al., Nat. Biotechnol. 30, 771 (2012)Google Scholar
  28. 28.
    J.O. Tegenfeldt, C. Prinz, H. Cao, S. Chou, W.W. Reisner, R. Riehn, Y.M. Wang, E.C. Cox, J.C. Sturm, P. Silberzan, et al., Proc. Natl. Acad. Sci. USA 101, 10979 (2004)ADSGoogle Scholar
  29. 29.
    B. Teague, M.S. Waterman, S. Goldstein, K. Potamousis, S. Zhou, S. Reslewic, D. Sarkar, A. Valouev, C. Churas, J.M. Kidd, et al., Proc. Natl. Acad. Sci. USA 107, 10848 (2010)ADSGoogle Scholar
  30. 30.
    M. Xiao, A. Phong, C. Ha, T.F. Chan, D. Cai, L. Leung, E. Wan, A.L. Kistler, J.L. DeRisi, P.R. Selvin, et al., Nucleic Acids Res. 35, e16 (2007)Google Scholar
  31. 31.
    M. Levy-Sakin, Y. Ebenstein, Curr. Opin. Biotechnol. 24, 690 (2013)Google Scholar
  32. 32.
    M. Levy-Sakin, A. Grunwald, S. Kim, N.R. Gassman, A. Gottfried, J. Antelman, Y. Kim, S.O. Ho, R. Samuel, X. Michalet, et al., ACS Nano 8, 14 (2014)Google Scholar
  33. 33.
    S.K. Das, M.D. Austin, M.C. Akana, P. Deshpande, H. Cao, M. Xiao, Nucleic Acids Res. 38, e177 (2010)Google Scholar
  34. 34.
    A.R. Hastie, L. Dong, A. Smith, F. Finkelstein, E.T. Lam, N. Huo, H. Cao, P.Y. Kwok, K.R. Deal, J. Dvorak, et al., PLoS One 8, e55864 (2013)ADSGoogle Scholar
  35. 35.
    R.L. Welch, R. Sladek, K. Dewar, W.W. Reisner, Lab Chip 12, 3314 (2012)Google Scholar
  36. 36.
    R.B. Bird, C.F. Curtiss, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, Volume 2, Kinetic Theory, Vol. 2 (John Wiley & Sons, Inc., 1986)Google Scholar
  37. 37.
    Y.L. Chen, M.D. Graham, J.J. de Pablo, G.C. Randall, M. Gupta, P.S. Doyle, Phys. Rev. E 70, 060901 (2004)ADSGoogle Scholar
  38. 38.
    W. Reisner, K.J. Morton, R. Riehn, Y.M. Wang, Z. Yu, M. Rosen, J.C. Sturm, S.Y. Chou, E. Frey, R.H. Austin, Phys. Rev. Lett. 94, 196101 (2005)ADSGoogle Scholar
  39. 39.
    D. Stein, F.H.J. van der Heyden, W.J.A. Koopmans, C. Dekker, Proc. Natl. Acad. Sci. USA 103, 15853 (2006)ADSGoogle Scholar
  40. 40.
    A. Balducci, P. Mao, J. Han, P.S. Doyle, Macromolecules 39, 6273 (2006)ADSGoogle Scholar
  41. 41.
    C.C. Hsieh, A. Balducci, P.S. Doyle, Macromolecules 40, 5196 (2007)ADSGoogle Scholar
  42. 42.
    P.K. Lin, C.C. Fu, Y.L. Chen, Y.R. Chen, P.K. Wei, C.H. Kuan, W.S. Fann, Phys. Rev. E 76, 011806 (2007)ADSGoogle Scholar
  43. 43.
    E.A. Strychalski, S.L. Levy, H.G. Craighead, Macromolecules 41, 7716 (2008)ADSGoogle Scholar
  44. 44.
    D.J. Bonthuis, C. Meyer, D. Stein, C. Dekker, Phys. Rev. Lett. 101, 108303 (2008)ADSGoogle Scholar
  45. 45.
    P.K. Lin, K.h. Lin, C.C. Fu, K.C. Lee, P.K. Wei, W.W. Pai, P.H. Tsao, Y.L. Chen, W.S. Fann, Macromolecules 42, 1770 (2009)ADSGoogle Scholar
  46. 46.
    J. Tang, S.L. Levy, D.W. Trahan, H.G. Craighead, P.S. Doyle, Macromolecules 43, 7368 (2010)ADSGoogle Scholar
  47. 47.
    H. Uemura, M. Ichikawa, Y. Kimura, Phys. Rev. E 81, 051801 (2010)ADSGoogle Scholar
  48. 48.
    P.K. Lin, J.F. Chang, C.H. Wei, P.H. Tsao, W.S. Fann, Y.L. Chen, Phys. Rev. E 84, 031917 (2011)ADSGoogle Scholar
  49. 49.
    F. Brochard, P.G. de Gennes, J. Chem. Phys. 67, 52 (1977)ADSGoogle Scholar
  50. 50.
    T. Odijk, Phys. Rev. E 77, 060901(R) (2008)ADSGoogle Scholar
  51. 51.
    D.W. Schaefer, J.F. Joanny, P. Pincus, Macromolecules 13, 1280 (1980)ADSGoogle Scholar
  52. 52.
    L. Dai, J.R.C. van der Maarel, P.S. Doyle, Macromolecules 47, 2445 (2014)ADSGoogle Scholar
  53. 53.
    M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, 1986)Google Scholar
  54. 54.
    R.M. Jendrejack, D.C. Schwartz, M.D. Graham, J.J. de Pablo, J. Chem. Phys. 119, 1165 (2003)ADSGoogle Scholar
  55. 55.
    R.M. Jendrejack, D.C. Schwartz, J.J. de Pablo, M.D. Graham, J. Chem. Phys. 120, 2513 (2004)ADSGoogle Scholar
  56. 56.
    N. Watari, M. Makino, N. Kikuchi, R.G. Larson, M. Doi, J. Chem. Phys. 126, 094902 (2007)ADSGoogle Scholar
  57. 57.
    A. Izmitli, D.C. Schwartz, M.D. Graham, J.J. de Pablo, J. Chem. Phys. 128, 085102 (2008)ADSGoogle Scholar
  58. 58.
    A.P. Markesteijn, O.B. Usta, I. Ali, A.C. Balazs, J.M. Yeomans, Soft Matter 5, 4575 (2009)ADSGoogle Scholar
  59. 59.
    R. Chelakkot, R.G. Winkler, G. Gompper, Europhys. Lett. 91, 14001 (2010)ADSGoogle Scholar
  60. 60.
    J.L. Harden, M. Doi, J. Phys. Chem. 96, 4046 (1992)Google Scholar
  61. 61.
    R.M. Jendrejack, E.T. Dimalanta, D.C. Schwartz, M.D. Graham, J.J. de Pablo, Phys. Rev. Lett. 91, 038102 (2003)ADSGoogle Scholar
  62. 62.
    H. Diamant, J. Phys. Soc. Jpn. 78, 041002 (2009)ADSGoogle Scholar
  63. 63.
    I. Pagonabarraga, M.H.J. Hagen, C.P. Lowe, D. Frenkel, Phys. Rev. E 59, 4458 (1999)ADSGoogle Scholar
  64. 64.
    B. Cui, H. Diamant, B. Lin, Phys. Rev. Lett. 89, 188302 (2002)ADSGoogle Scholar
  65. 65.
    N. Liron, S. Mochon, J. Eng. Math. 10, 287 (1976)MATHGoogle Scholar
  66. 66.
    A. Balducci, Ph.D. thesis, Massachusetts Institute of Technology, 2008Google Scholar
  67. 67.
    P. Bhattacharyya, B.J. Cherayil, J. Chem. Phys. 138, 244904 (2013)ADSGoogle Scholar
  68. 68.
    E. Werner, F. Westerlund, J.O. Tegenfeldt, B. Mehlig, Macromolecules 46, 6644 (2013)ADSGoogle Scholar
  69. 69.
    J.G. Kirkwood, J. Riseman, J. Chem. Phys. 16, 565 (1948)ADSGoogle Scholar
  70. 70.
    J.G. Kirkwood, J. Polym. Sci. 12, 1 (1954)ADSGoogle Scholar
  71. 71.
    J.J. Erpenbeck, J.G. Kirkwood, J. Chem. Phys. 29, 909 (1958)ADSGoogle Scholar
  72. 72.
    J.J. Erpenbeck, J.G. Kirkwood, J. Chem. Phys. 38, 1023 (1963)ADSGoogle Scholar
  73. 73.
    R. Zwanzig, J. Chem. Phys. 45, 1858 (1966)ADSGoogle Scholar
  74. 74.
    H. Yamakawa, Modern Theory of Polymer Solutions (Harper and Row, 1971)Google Scholar
  75. 75.
    D.R. Tree, Y. Wang, K.D. Dorfman, Biomicrofluidics 7, 054118 (2013)Google Scholar
  76. 76.
    J. Rotne, S. Prager, J. Chem. Phys. 50, 4831 (1969)ADSGoogle Scholar
  77. 77.
    H. Yamakawa, J. Chem. Phys. 53, 436 (1970)ADSGoogle Scholar
  78. 78.
    W. Zylka, J. Chem. Phys. 94, 4628 (1991)ADSGoogle Scholar
  79. 79.
    R.M. Jendrejack, M.D. Graham, J.J. de Pablo, J. Chem. Phys. 113, 2894 (2000)ADSGoogle Scholar
  80. 80.
    H.C. Öttinger, Stochastic Processes in Polymeric Fluids: Tools and Examples for Developing Simulation Algorithms (Springer-Verlag, 1996)Google Scholar
  81. 81.
    M. Fixman, Macromolecules 19, 1204 (1986)ADSGoogle Scholar
  82. 82.
    T. Ando, E. Chow, Y. Saad, J. Skolnick, J. Chem. Phys. 137, 064106 (2012)ADSGoogle Scholar
  83. 83.
    A. Saadat, B. Khomami, J. Chem. Phys. 140, 184903 (2014)ADSGoogle Scholar
  84. 84.
    M. Fixman, J. Chem. Phys. 69, 1527 (1978)ADSGoogle Scholar
  85. 85.
    P.S. Grassia, E.J. Hinch, L.C. Nitsche, J. Fluid Mech. 282, 373 (1995)ADSMATHMathSciNetGoogle Scholar
  86. 86.
    P.J. Mucha, S.Y. Tee, D.A. Weitz, B.I. Shraiman, M.P. Brenner, J. Fluid Mech. 501, 71 (2004)ADSMATHMathSciNetGoogle Scholar
  87. 87.
    J.P. Hernández-Ortiz, J.J. de Pablo, M.D. Graham, J. Chem. Phys. 125, 164906 (2006)ADSGoogle Scholar
  88. 88.
    J.P. Hernández-Ortiz, J.J. de Pablo, M.D. Graham, Phys. Rev. Lett. 98, 140602 (2007)ADSGoogle Scholar
  89. 89.
    J.P. Hernández-Ortiz, P.T. Underhill, M.D. Graham, J. Phys.-Condens. Mat. 21, 204107 (2009)ADSGoogle Scholar
  90. 90.
    K.L. Kounovsky-Shafer, J.P. Hernández-Ortiz, K. Jo, T. Odijk, J.J. de Pablo, D.C. Schwartz, Macromolecules 46, 8356 (2013)ADSGoogle Scholar
  91. 91.
    M. Fixman, Macromolecules 14, 1710 (1981)ADSGoogle Scholar
  92. 92.
    B. Liu, B. Dünweg, J. Chem. Phys. 118, 8061 (2003)ADSGoogle Scholar
  93. 93.
    P. Hagerman, B. Zimm, Biopolymers 20, 1481 (1981)Google Scholar
  94. 94.
    M. Fixman, Macromolecules 14, 1706 (1981)ADSGoogle Scholar
  95. 95.
    R. Rodríguez Schmidt, J. Hernández Cifre, J. Garcìa de la Torre, Eur. Phys. J. E 35, 1 (2012)Google Scholar
  96. 96.
    J. Wang, H. Gao, J. Chem. Phys. 123, 084906 (2005)ADSGoogle Scholar
  97. 97.
    D.R. Tree, Y. Wang, K.D. Dorfman, Phys. Rev. Lett. 110, 208103 (2013)ADSGoogle Scholar
  98. 98.
    A. Muralidhar, D.R. Tree, Y. Wang, K.D. Dorfman, J. Chem. Phys. 140, 084905 (2014)ADSGoogle Scholar
  99. 99.
    F. Persson, P. Utko, W. Reisner, N.B. Larsen, A. Kristensen, Nano Lett. 9, 1382 (2009)ADSGoogle Scholar
  100. 100.
    D. Gupta, J. Sheats, A. Muralidhar, J.J. Miller, D.E. Huang, S. Mahshid, K.D. Dorfman, W. Reisner, J. Chem. Phys. 140, 214901 (2014)ADSGoogle Scholar
  101. 101.
    D.C. Morse, Macromolecules 31, 7044 (1998)ADSGoogle Scholar
  102. 102.
    T.W. Burkhardt, Y. Yang, G. Gompper, Phys. Rev. E 82, 041801 (2010)ADSGoogle Scholar
  103. 103.
    U.F. Keyser, B.N. Koeleman, S. van Dorp, D. Krapf, R.M.M. Smeets, S.G. Lemay, N.H. Dekker, C. Dekker, Nat. Phys. 2, 473 (2006)Google Scholar
  104. 104.
    E.H. Trepagnier, A. Radenovic, D. Sivak, P. Geissler, J. Liphardt, Nano Lett. 7, 2824 (2007)ADSGoogle Scholar
  105. 105.
    B. Laun, A. Aksimentiev, Phys. Rev. E 78, 021912 (2008)ADSGoogle Scholar
  106. 106.
    H. Cao, Z. Yu, J. Wang, J.O. Tegenfeldt, R.H. Austin, W. Wu, S.Y. Chou, Appl. Phys. Lett. 81, 174 (2002)ADSGoogle Scholar
  107. 107.
    A. Ladd, R. Verberg, J. Stat. Phys. 104, 1191 (2001)ADSMATHMathSciNetGoogle Scholar
  108. 108.
    O.B. Usta, A.J.C. Ladd, J.E. Butler, J. Chem. Phys. 122, 094902 (2005)ADSGoogle Scholar
  109. 109.
    O.B. Usta, J.E. Butler, A.J.C. Ladd, Phys. Fluids 18, 094902 (2006)Google Scholar
  110. 110.
    Y.L. Chen, H. Ma, M.D. Graham, J.J. de Pablo, Macromolecules 40, 5978 (2007)ADSGoogle Scholar
  111. 111.
    Y.L. Chen, Biomicrofluidics 7, 054119 (2013)Google Scholar
  112. 112.
    Y.L. Chen, Y.H. Lin, J.F. Chang, P.K. Lin, Macromolecules 47, 1199 (2014)ADSGoogle Scholar
  113. 113.
    B. Dünweg, A.J.C. Ladd, Adv. Polym. Sci. 221, 89 (2009)Google Scholar
  114. 114.
    J.M. Polson, J.P. Gallant, J. Chem. Phys. 124, 184905 (2006)ADSGoogle Scholar
  115. 115.
    R. Khare, M.D. Graham, J.J. de Pablo, Phys. Rev. Lett. 96, 224505 (2006)ADSGoogle Scholar
  116. 116.
    P. Español, P. Warren, Europhys. Lett. 30, 191 (1995)ADSGoogle Scholar
  117. 117.
    R.D. Groot, P.B. Warren, J. Chem. Phys. 107, 4423 (1997)ADSGoogle Scholar
  118. 118.
    M. Ripoll, M.H. Ernst, P. Español, J. Chem. Phys. 115, 7271 (2001)ADSGoogle Scholar
  119. 119.
    A. Malevanets, R. Kapral, J. Chem. Phys. 110, 8605 (1999)ADSGoogle Scholar
  120. 120.
    Y. Kong, C. Manke, W. Madden, A. Schlijper, Int. J. Thermophys. 15, 1093 (1994)ADSGoogle Scholar
  121. 121.
    J. Sané, J.T. Padding, A.A. Louis, Phys. Rev. E 79, 051402 (2009)ADSGoogle Scholar
  122. 122.
    M. Chinappi, E. De Angelis, Philos. Trans. Roy. Soc. A 369, 2329 (2011)ADSMATHGoogle Scholar
  123. 123.
    D. Huh, K.L. Mills, X. Zhu, M.A. Burns, M.D. Thouless, S. Takayama, Nat. Mater. 6, 424 (2007)ADSGoogle Scholar
  124. 124.
    K.L. Mills, D. Huh, S. Takayama, M.D. Thouless, Lab Chip 10, 1627 (2010)Google Scholar
  125. 125.
    S. Azimi, Z. Dang, C. Zhang, J. Song, M.B.H. Breese, C.H. Sow, J.A. van Kan, J.R.C. van der Maarel, Lab Chip 14, 2081 (2014)Google Scholar
  126. 126.
    W.F. Reinhart, D.R. Tree, K.D. Dorfman, Biomicrofluidics 7, 024102 (2013)Google Scholar
  127. 127.
    C. Manneschi, E. Angeli, T. Ala-Nissila, L. Repetto, G. Firpo, U. Valbusa, Macromolecules 46, 4198 (2013)ADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  • K. D. Dorfman
    • 1
  • D. Gupta
    • 1
  • A. Jain
    • 1
  • A. Muralidhar
    • 1
  • D. R. Tree
    • 1
    • 2
  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of Minnesota - Twin CitiesMinneapolisUSA
  2. 2.Materials Research LaboratoryUniversity of California - Santa BarbaraSanta BarbaraUSA

Personalised recommendations