Skip to main content
Log in

Effective transport equations in quasi 1D systems

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The mapping methods reducing 2D or 3D transport equations in quasi 1D structures onto the longitudinal coordinate x are revisited. The general formalism based on homogenization is explained on the simplest case, diffusion in a 2D channel of varying width A(x). Then its modifications to diffusion in an external field (Smoluchowski equation), and nonzero mass of the particles (Klein-Kramers equation) are demonstrated. A special attention is payed to the role of the “natural” curvilinear coordinates, connected with the stationary flow, in the mapping and derivation of the effective equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Reimann, Phys. Rep. 361, 57 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. S. Matthias, F. Müller, Nature (London) 424, 53 (2003)

    Article  ADS  Google Scholar 

  3. P. Hänggi, F. Marchesoni, Rev. Mod. Phys. 81, 387 (2009)

    Article  ADS  Google Scholar 

  4. B.-Q. Ai, L.-G. Liu, Phys. Rev. E 74, 051114 (2006)

    Article  ADS  Google Scholar 

  5. B.-Q. Ai, L.-G. Liu, J. Chem. Phys. 128, 024706 (2008)

    Article  ADS  Google Scholar 

  6. P.S. Burada, G. Schmid, D. Reguera, J.M. Rubí, P. Hänggi, Eur. Phys. J. B 69, 11 (2009)

    Article  ADS  Google Scholar 

  7. P.S. Burada, G. Schmid, D. Reguera, J.M. Rubí, P. Hänggi, Phys. Rev. Lett. 101, 130602 (2008)

    Article  ADS  Google Scholar 

  8. D. Reguera, G. Schmid, P.S. Burada, J.M. Rubí, P. Reimann, P. Hänggi, Phys. Rev. Lett. 96, 130603 (2006)

    Article  ADS  Google Scholar 

  9. P.S. Burada, G. Schmid, Phys. Rev. E 82, 051128 (2010)

    Article  ADS  Google Scholar 

  10. F. Marchesoni, S. Savel’ev, Phys. Rev. E 80, 011120 (2009)

    Article  ADS  Google Scholar 

  11. M.H. Jacobs, Diffusion processes (Springer, New York, 1967)

  12. R. Zwanzig, J. Phys. Chem. 96, 3926 (1992)

    Article  Google Scholar 

  13. D. Reguera, J.M. Rubí, Phys. Rev. E 64, 061106 (2001)

    Article  ADS  Google Scholar 

  14. A.M. Berezhkovskii, M.A. Pustovoit, S.M. Bezrukov, J. Chem. Phys. 126, 134706 (2007)

    Article  ADS  Google Scholar 

  15. J.M. Rubí, D. Reguera, Chem. Phys. 375, 518 (2010)

    Article  ADS  Google Scholar 

  16. A.M. Berezhkovskii, A.V. Barzykin, V.Y. Zitserman, J. Chem. Phys. 131, 224110 (2009)

    Article  ADS  Google Scholar 

  17. A.M. Berezhkovskii, L. Dagdug, Y.A. Makhnovskii, V.Y. Zitserman, J. Chem. Phys. 132, 221104 (2010)

    Article  ADS  Google Scholar 

  18. I. Pineda, M.-V. Vazquez, A.M. Berezhkovskii, L. Dagdug, J. Chem. Phys. 135, 224101 (2011)

    Article  ADS  Google Scholar 

  19. P. Kalinay, J.K. Percus, J. Chem. Phys. 122, 204701 (2005)

    Article  ADS  Google Scholar 

  20. P. Kalinay, J.K. Percus, J. Stat. Phys. 123, 1059 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. R.M. Bradley, Phys. Rev. E 80, 061142 (2009)

    Article  ADS  Google Scholar 

  22. P. Kalinay, Phys. Rev. E 87, 032143 (2013)

    Article  ADS  Google Scholar 

  23. L. Dagdug, I. Pineda, J. Chem. Phys. 137, 024107 (2012)

    Article  ADS  Google Scholar 

  24. G. Chacon-Acosta, I. Pineda, L. Dagdug, J. Chem. Phys. 139, 214115 (2013)

    Article  ADS  Google Scholar 

  25. N. Ogawa, Phys. Lett. A 377, 2465 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  26. P. Kalinay, Phys. Rev. E 80, 031106 (2009)

    Article  ADS  Google Scholar 

  27. P. Kalinay, J.K. Percus, Phys. Rev. E 83, 031109 (2011)

    Article  ADS  Google Scholar 

  28. P. Kalinay, Phys. Rev. E 84, 011118 (2011)

    Article  ADS  Google Scholar 

  29. P. Kalinay, J.K. Percus, J. Stat. Phys. 148, 1135 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. G. Wilemski, J. Stat. Phys. 14, 153 (1976)

    Article  ADS  Google Scholar 

  31. P.K. Ghosh, P. Hänggi, F. Marchesoni, et al., EPL 98, 50002 (2012)

    Article  ADS  Google Scholar 

  32. P.K. Ghosh, P. Hänggi, F. Marchesoni, et al., Phys. Rev. E 86, 021112 (2012)

    Article  ADS  Google Scholar 

  33. S. Martens, I.M. Sokolov, L. Schimansky-Geier, J. Chem. Phys. 136, 111102 (2012)

    Article  ADS  Google Scholar 

  34. P. Kalinay, J.K. Percus, Phys. Rev. E 78, 021103 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  35. P. Kalinay, J.K. Percus, Phys. Rev. E 74, 041203 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  36. S. Martens, G. Schmid, L. Schimanski-Geier, P. Hänggi, Phys. Rev. E 83, 051135 (2011)

    Article  ADS  Google Scholar 

  37. S. Martens, G. Schmid, L. Schimanski-Geier, P. Hänggi, Chaos 20, 047518 (2011)

    Article  ADS  Google Scholar 

  38. N. Laachi, M. Kenward, E. Yariv, K.D. Dorfman, EPL 80, 50009 (2007)

    Article  ADS  Google Scholar 

  39. E. Yariv, K.D. Dorfman, Phys. Fluids 19, 037101 (2007)

    Article  ADS  Google Scholar 

  40. K.D. Dorfman, E. Yariv, J. Chem. Phys. 141, 044118 (2014)

    Article  ADS  Google Scholar 

  41. H. Brenner, D.A. Edwards, Macrotransport Processes (Butterworth-Heinemann, Boston, 1993)

  42. R. Zwanzig, Physica 117A, 277 (1983)

    Article  ADS  Google Scholar 

  43. S. Lifson, J.L. Jackson, J. Chem. Phys. 36, 2410 (1962)

    Article  ADS  Google Scholar 

  44. V.I. Yudson, P. Reineker, Phys. Rev. E 64, 031108 (2001)

    Article  ADS  Google Scholar 

  45. P. Kalinay, J.K. Percus, Phys. Rev. E 72, 061203 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  46. P. Kalinay, J. Chem. Phys. 139, 054116 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kalinay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinay, P. Effective transport equations in quasi 1D systems. Eur. Phys. J. Spec. Top. 223, 3027–3043 (2014). https://doi.org/10.1140/epjst/e2014-02317-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2014-02317-5

Keywords

Navigation