The European Physical Journal Special Topics

, Volume 223, Issue 6, pp 999–1016 | Cite as

Laser electron acceleration beyond 100 GeV

Regular Article IZEST Science: Laser Driven Particle Acceleration
Part of the following topical collections:
  1. Zetta-Exawatt Science and Technology

Abstract

Nowadays there is great progress on laser-driven plasma-based accelerators by exploiting petawatt-class lasers, where for one aspect electron beams can be accelerated to multi-GeV energy in a centimeter-scale plasma due to laser wakefield acceleration mechanism. While to date, worldwide researches on laser-plasma accelerators are focused to create compact particle and radiation sources for applications in a wide range of sciences, including basic, medical and industrial sciences, there are great interests in applications for high energy physics and astrophysics that explore unprecedented high-energy frontier phenomena, for which laser plasma accelerator concepts provide us with promising tools. Here, our endeavors toward “extreme light” in the IZEST are envisaged for the next 30 years perspective and issues on laser plasma electron acceleration beyond 100 GeV and furthermore toward the TeV regime, aiming at high energy physics applications.

Keywords

European Physical Journal Special Topic Laser Plasma Plasma Channel Plasma Waveguide Bubble Regime 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Tajima, J.M. Dawson, Phys. Rev. Lett. 43, 267 (1979)ADSCrossRefGoogle Scholar
  2. 2.
    W.P. Leemans, et al., Nat. Phys. 2, 696 (2006)CrossRefGoogle Scholar
  3. 3.
    C.E. Clayton, et al., Phys. Rev. Lett. 105, 105003 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    H. Lu, et al., Appl. Phys. Lett. 99, 091502 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    X.M. Wang, et al., Nat. Comm. 4, 1988 (2013)ADSGoogle Scholar
  6. 6.
    H.T. Kim, et al., Phys. Rev. Lett. 111, 165002 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    T. Kameshima, et al., Appl. Phys. Exp. 1, 066001 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    S. Karsch, et al., New J. Phys. 9, 415 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    O. Lundh, et al., Nat. Phys. 7, 219 (2011)CrossRefGoogle Scholar
  10. 10.
    N.A.M. Hafz, et al., Nature Photon. 2, 571 (2008)CrossRefGoogle Scholar
  11. 11.
    J.S. Liu, et al., Phys. Rev. Lett. 107, 035001 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    B.B. Pollock, et al., Phys. Rev. Lett. 107, 045001 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    A. Pak, et al., Phys. Rev. Lett. 104, 025003 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    C. McGuffey, et al., Phys. Rev. Lett. 104, 025004 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    C. Xia, et al., Phys. Plasmas 18, 113101 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    S.F. Martins, et al., Nat. Phys. 6, 311 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    J.L. Vay, et al., Phys. Plasmas 18, 123103 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    M. Tzoufras, et al., J. Plasma Phys. 78, 401 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    C.B. Schroeder, et al., Phys. Rev. ST Accel. Beams 13, 101301 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    K. Nakajima, et al., Phys. Rev. ST Accel. Beams 14, 091301 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    K. Nakajima, et al., Chin. Optics Lett. 11, 013501 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    N. Blanchot,, et al., Opt. Expr. 18, 10088 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    B. Hafizi, et al., Phys. Rev. E 62, 4120 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    B. Hafizi, et al., Phys. Plasmas 10, 1483 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    C. Chiu, et al., Phys. Rev. ST Accel. Beams 3, 101301 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    I. Kostyukov, et al., Phys. Plasmas 11, 5256 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    W. Lu, et al., Phys. Rev. Lett. 96, 165002 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    W. Lu, et al., Phys. Rev. ST Accel. Beams 10, 061301 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    E. Eseray, W.P. Leemans, Phys. Rev. E 59, 1082 (1999)ADSCrossRefGoogle Scholar
  30. 30.
    S.Y. Kalmykov, et al., Plasma Phys. Control. Fusion 53, 014006 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    M. Chen, et al., Phys. Plasmas 19, 033101 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    C.G. Durfee III, et al., Phys. Rev. Lett. 71, 2409 (1993)ADSCrossRefGoogle Scholar
  33. 33.
    P. Volfbeyn, et al., Phys. Plasmas 6, 2269 (1999)ADSCrossRefGoogle Scholar
  34. 34.
    Y.F. Xiao, et al., Phys. Plasmas 11, L21 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    Y. Ehrlich, et al., Phys. Rev. Lett. 77, 4186 (1996)ADSCrossRefGoogle Scholar
  36. 36.
    M. Liu, et al., Rev. Sci. Instrum. 81, 036107 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    T. Hosokai, et al., Opt. Lett. 25, 10 (2000)ADSCrossRefGoogle Scholar
  38. 38.
    S.M. Hooker, et al., J. Opt. Soc. Am. B 17, 90 (2000)ADSCrossRefGoogle Scholar
  39. 39.
    J.C. Ju, Ph.D. thesis, Université de Paris-Sud 11, Orsay, France, 2013Google Scholar
  40. 40.
    B. Cros, et al., Phys. Rev. E 65, 026405 (2002)ADSCrossRefGoogle Scholar
  41. 41.
    D. Du, et al., Appl. Phys. Lett. 64, 3071 (1994)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  1. 1.High Energy Accelerator Research Organization Oho, TsukubaIbarakiJapan

Personalised recommendations