The European Physical Journal Special Topics

, Volume 223, Issue 4, pp 729–756 | Cite as

On the synchronization of chains of nonlinear pendula connected by linear springs

Regular Article
Part of the following topical collections:
  1. Synchronization of Pendula Systems


In this work the theoretical model of multidimensional physical systems, representable as chains of nonlinearly coupled chaotic pendula subjected to harmonic excitations, is formulated and its nonlinear dynamics and synchronization characteristics are studied by means of a numerical approach. Some considerations on the role of the main system parameters are drawn. Dynamic perturbations, due for example to background interactions or to intrinsic pathological imperfections of the chain, are also taken into account. Their effect is analyzed with reference to two distinct situations: uniform application to all the pendula and localized application to the extremities of the chain.


Lyapunov Exponent European Physical Journal Special Topic Chaotic Attractor Complete Synchronization Vertical Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Strogatz, Sync: the emerging science of spontaneous order (Hyperion, New York, 2003)Google Scholar
  2. 2.
    A. Pikovsky, M.G. Rosenblum, J. Kurths, Synchronization: a universal concept in nonlinear science (Cambridge University Press, Cambridge, 2001)Google Scholar
  3. 3.
    E. Fermi, J. Pasta, S. Ulam, “Studies of nonlinear problems,” Los Alamos Report LA-1940 (1955), published later in Fermi E., Pasta J. and Ulam S., Collected Papers of Enrico Fermi, edited by E. Segré (University of Chicago Press, Chicago, 1965)Google Scholar
  4. 4.
    R. Chacón, L. Marcheggiani, Phys. Rev. E 82, 016201/1-7 (2010)ADSGoogle Scholar
  5. 5.
    S. Boccaletti, The Synchronized Dynamics of Complex Systems (Elsevier, Amsterdam, 2008)Google Scholar
  6. 6.
    A.H. Nayfeh, D.T. Mook, Nonlinear oscillations (John Wiley & Sons, New York, 1995)Google Scholar
  7. 7.
    R.W. Leven, B.P. Koch, Phys. Lett. A 86, 71 (1981)ADSCrossRefGoogle Scholar
  8. 8.
    W. Szemplinska-Stupnicka, E. Tyrkiel, A. Zubrzycki, Int. J. Bifurcat. Chaos 10, 2161 (2000)MATHMathSciNetGoogle Scholar
  9. 9.
    D. Capecchi, S.R. Bishop, Dynam. Stabil. Syst. 9, 123 (1994)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    M.J. Clifford, S.R. Bishop, Phys. Lett. A 201, 191 (1995)ADSCrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    W. Szemplinska-Stupnicka, E. Tyrkiel, Int. J. Bifurcat. Chaos 12, 159 (2002)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    W. Szemplinska-Stupnicka, E. Tyrkiel, Nonlinear Dyn. 27, 271 (2002)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    X. Xu, M. Wiercigroch, M.P. Cartmell, Chaos Solitons Fract. 23, 1537 (2005)ADSCrossRefMATHGoogle Scholar
  14. 14.
    S. Lenci, E. Pavlovskaia, G. Rega, M. Wiercigroch, J. Sound Vib. 310, 243 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    B. Horton, J. Sieber, J.M.T. Thompson, M. Wiercigroch, Int. J. Nonlinear Mech. 46, 436 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    J.M. Balthazar, J.L.P. Felix, R.M.L.R.F. Brasil, Appl. Math. Comput. 164, 615 (2005)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    A. Najdecka, V. Vaziri, M. Wiercigroch, IUTAM Symposium on Nonlinear Dynamics for Advanced Technologies and Engineering Design, IUTAM Bookseries 32 (Springer, Aberdeen, 2013), p. 185Google Scholar
  18. 18.
    A.O. Belyakov, Phys. Lett. A 375, 2524 (2011)ADSCrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    C. Huygens, Christiaan Huygens’s the pendulum clock or geometrical demonstrations concerning the motion of pendula as applied to clocks, translated by Blackwell R.J., (Iowa State University Press, Ames, 1986)Google Scholar
  20. 20.
    M. Bennett, M.F. Schatz, H. Rockwood, K. Wiesenfeld, Proc. R. Soc. Lond. A 458, 563 (2002)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    L.M. Pecora, T.L. Carroll, Phys. Rev. Lett. 64, 821 (1990)ADSCrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    K. Czolczynski, P. Perlikowski, A. Stefanski, T. Kapitaniak, Int. J. Bifurcat. Chaos 22, 1 (2012)CrossRefMathSciNetGoogle Scholar
  23. 23.
    K. Czolczynski, P. Perlikowski, A. Stefanski, T. Kapitaniak, Commun. Nonlinear. Numer. Simulat. 18, 386 (2013)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    K. Czolczynski, P. Perlikowski, A. Stefanski, T. Kapitaniak, Phys. A 388, 5013 (2009)CrossRefGoogle Scholar
  25. 25.
    A. Uchida, T. Sato, T. Ogawa, F. Kannari, Phys. Rev. E 58, 7249 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    J.M. Ottino, F.J. Muzzio, M. Tjahjadi, J.G. Franjione, S.C. Jana, H.A. Kusch, Science 257, 754 (1992)ADSCrossRefGoogle Scholar
  27. 27.
    Y.V. Andreyev, Y.L. Belsky, A.S. Dmitriev, D.A. Kuminov, IEEE Trans. Neur. Networks 7, 290 (1996)CrossRefGoogle Scholar
  28. 28.
    W.X. Ding, H.Q. She, W. Huang, C.X. Yu, Phys. Rev. Lett. 72, 96 (1994)ADSCrossRefGoogle Scholar
  29. 29.
    S.J. Schiff, K. Jerger, D.H. Duong, T. Chang, M.L. Spano, W.L. Ditto, Nature 370, 615 (1994)ADSCrossRefGoogle Scholar
  30. 30.
    G.G. Gregoriou, S.J. Gotts, H. Zhou, R. Desimone, Science 324, 1207 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    L. Marcheggiani, S. Lenci, Meccanica 45, 531 (2010)CrossRefMATHGoogle Scholar
  32. 32.
    X. Wu, J. Cai, M. Wang, Chaos Solitons Fract. 36, 121 (2008)ADSCrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    B.A. Idowu, U.E. Vincent, A.N. Njah, Chaos Solitons Fract. 39, 2322 (2009)ADSCrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    O.I. Olusola, U.E. Vincent, A.N. Njah, Pramana – J. Phys. 73, 1011 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    J.R. Dormand, P.J. Prince, J. Comp. Appl. Math. 6, 19 (1980)CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    G. Benettin, L. Galgani, A. Giorgilli, J.M. Strelcyn, Meccanica 15, 9 (1980)ADSCrossRefMATHGoogle Scholar
  37. 37.
    A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Physica D 16, 285 (1985)ADSCrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    R. Chacón, Control of homoclinic chaos by weak periodic perturbations (World Scientific Publishing, London, 2005)Google Scholar
  39. 39.
    S. Lenci, G. Rega, Nonlinear Dyn. 15, 391 (1998)CrossRefMATHMathSciNetGoogle Scholar
  40. 40.
    R. Chacón, P.J. Martinez, J.A. Martinez, S. Lenci, Chaos Solitons Fract. 42, 2342 (2009)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  1. 1.Department of Civil and Buildings Engineering, and ArchitecturePolytechnic University of MarcheAnconaItaly
  2. 2.Department of Applied Physics, Faculty of Industrial EngineeringUniversity of ExtremaduraBadajozSpain

Personalised recommendations