Skip to main content
Log in

Characterization of local structures with bond-order parameters and graphs of the nearest neighbors, a comparison

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We compare two methods for the characterization of local order in samples undergoing crystal nucleation and growth. Particles with a crystal-like surrounding need to be identified to follow the nucleation process. Both methods are based on the knowledge of the particle positions in a small volume of the sample. (i) Local bond-order parameters are used to quantify the orientation of the nearest neighbors of a particle, while (ii) the graph method determines the topological arrangement of the nearest neighbors and the bonds between them. Both methods are used to detect crystal-like particles and crystal nuclei in a supercooled fluid surrounding and to determine the structure of small crystal nuclei. The properties of these nuclei are of great interest for a deeper understanding of crystal nucleation, and they can be studied in detail in colloidal model systems that allow to follow the evolution of the nuclei with single particle resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.F. Kelton, Crystal nucleation in liquids and glasses, edited by H. Ehrenbach, D. Turnbull, Solid State Physics, vol. 45 (Academic Press, Boston, 1991), p. 75

  2. U. Gasser, J. Phys.: Cond. Mat. 21, 203101 (2009)

    ADS  Google Scholar 

  3. U. Gasser, E.R. Weeks, A. Schofield, P.N. Pusey, D.A. Weitz, Science 292, 258 (2001)

    Article  ADS  Google Scholar 

  4. P. Rein ten Wolde, M.J. Ruiz-Montero, D. Frenkel, Phys. Rev. Lett. 75, 2714 (1995)

    Article  ADS  Google Scholar 

  5. P.N. Pusey, W. van Megen, Nature 320, 340 (1986)

    Article  ADS  Google Scholar 

  6. P.N. Pusey, W. van Megen, P. Bartlett, B.J. Ackerson, J.G. Rarity, S.M. Underwood, Phys. Rev. Lett. 63, 2753 (1989)

    Article  ADS  Google Scholar 

  7. K. Schaetzel, B.J. Ackerson, Phys. Rev. E 48, 3766 (1993)

    Article  ADS  Google Scholar 

  8. B.J. Ackerson, K. Schaetzel, Phys. Rev. E 52, 6448 (1995)

    Article  ADS  Google Scholar 

  9. V. Prasad, D. Semwogerere, E.R. Weeks, J. Phys.: Cond. Mat. 19, 113102 (2007)

    ADS  Google Scholar 

  10. J.C. Crocker, D.G. Grier, J. Coll. Interface Sci. 179, 298 (1996)

    Article  Google Scholar 

  11. K. Sandomirski, E. Allahyarov, H. Lowen, S.U. Egelhaaf, Soft Matter 7, 8050 (2011)

    Article  ADS  Google Scholar 

  12. F. Ziese, G. Maret, U. Gasser, J. Phys.: Condens. Matter 25, 375105 (2013)

    Google Scholar 

  13. P.J. Steinhardt, D.R. Nelson, M. Ronchetti, Phys. Rev. B 28, 784 (1983)

    Article  ADS  Google Scholar 

  14. J.S. van Duijneveldt, D. Frenkel, J. Chem. Phys. 96, 4655 (1992)

    Article  ADS  Google Scholar 

  15. S. Auer, D. Frenkel, J. Chem. Phys. 120, 3015 (2004)

    Article  ADS  Google Scholar 

  16. C. Desgranges, J. Delhommelle, Phys. Rev. B 77, 6 (2008)

    Article  Google Scholar 

  17. U. Gasser, A. Schofield, D.A. Weitz, J. Phys.: Condens. Matter 15, S375 (2003)

    ADS  Google Scholar 

  18. M. Leocmach, H. Tanaka, Nature Comm. 3, 8 (2012)

    Article  Google Scholar 

  19. W. Lechner, C. Dellago, J. Chem. Phys. 129, 5 (2008)

    Article  Google Scholar 

  20. D.S. Franzblau, Phys. Rev. B 44, 4925 (1991)

    Article  ADS  Google Scholar 

  21. S.W. Provencher, Comput. Phys. Comm. 27, 213 (1982)

    Article  ADS  Google Scholar 

  22. A.-P. Hynninen, M. Dijkstra, Phys. Rev. E 68, 021407 (2003)

    Article  ADS  Google Scholar 

  23. J.-P. Hansen, I.R. McDonald, Theory of simple liquids, 2nd edn. (Academic Press, London, 1986)

  24. G. Voronoi, J. Reine Ang. Math. 133, 97 (1908)

    MATH  Google Scholar 

  25. J.L. Finney, J. Comput. Phys. 32, 137 (1979)

    Article  ADS  Google Scholar 

  26. J.P. Troadec, A. Gervois, L. Oger, Europhys. Lett. 42, 167 (1998)

    Article  ADS  Google Scholar 

  27. B. O'Malley, Molecular Dynamics Investigation of Crystallization in the Hard Sphere System, Ph.D. thesis (Royal Melbourne Institute of Technology, 2001)

  28. W. Mickel, S.C. Kapfer, G.E. Schroder-Turk, K. Mecke, J. Chem. Phys. 138, 7 (2013)

    Article  Google Scholar 

  29. P.N. Pusey, E. Zaccarelli, C. Valeriani, E. Sanz, W.C.K. Poon, M.E. Cates, Phil. Trans. Royal Soc. a-Math. Phys. Eng. Sci. 367, 4993 (2009)

    Article  ADS  Google Scholar 

  30. S. Auer, D. Frenkel, Ann. Rev. Phys. Chem. 55, 333 (2004)

    Article  ADS  Google Scholar 

  31. S. Auer, D. Frenkel, Adv. Polym. Sci. 173, 149 (2005)

    Article  Google Scholar 

  32. P. Rein ten Wolde, M.J. Ruiz-Montero, D. Frenkel, J. Chem. Phys. 104, 9932 (1996)

    Article  ADS  Google Scholar 

  33. S. Auer, D. Frenkel, Nature 413, 711 (2001)

    Article  ADS  Google Scholar 

  34. B. O'Malley, I. Snook, J. Chem. Phys. 123, 054511 (2005)

    Article  ADS  Google Scholar 

  35. Y.H. Chui, R.J. Rees, I.K. Snook, B. O'Malley, S.P. Russo, J. Chem. Phys. 125, 114703 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Gasser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gasser, U., Ziese, F. & Maret, G. Characterization of local structures with bond-order parameters and graphs of the nearest neighbors, a comparison. Eur. Phys. J. Spec. Top. 223, 455–467 (2014). https://doi.org/10.1140/epjst/e2014-02102-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2014-02102-6

Keywords

Navigation