The European Physical Journal Special Topics

, Volume 222, Issue 11, pp 2855–2872 | Cite as

Electrokinetic and hydrodynamic properties of charged-particles systems

From small electrolyte ions to large colloids
  • G. Nägele
  • M. Heinen
  • A. J. Banchio
  • C. Contreras-Aburto
Review Electric Fields

Abstract

Dynamic processes in dispersions of charged spherical particles are of importance both in fundamental science, and in technical and bio-medical applications. There exists a large variety of charged-particles systems, ranging from nanometer-sized electrolyte ions to micron-sized charge-stabilized colloids. We review recent advances in theoretical methods for the calculation of linear transport coefficients in concentrated particulate systems, with the focus on hydrodynamic interactions and electrokinetic effects. Considered transport properties are the dispersion viscosity, self- and collective diffusion coefficients, sedimentation coefficients, and electrophoretic mobilities and conductivities of ionic particle species in an external electric field. Advances by our group are also discussed, including a novel mode-coupling-theory method for conduction-diffusion and viscoelastic properties of strong electrolyte solutions. Furthermore, results are presented for dispersions of solvent-permeable particles, and particles with non-zero hydrodynamic surface slip. The concentration-dependent swelling of ionic microgels is discussed, as well as a far-reaching dynamic scaling behavior relating colloidal long- to short-time dynamics.

Keywords

European Physical Journal Special Topic Hard Sphere Colloidal Dispersion Slip Length Lattice Boltzmann 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Gapinski, A. Wilk, A. Patkowski, W. Häussler, A.J. Banchio, R. Pecora, G. Nägele, J. Chem. Phys. 123, 054708 (2005)ADSGoogle Scholar
  2. 2.
    M. Heinen, F. Zanini, F. Roosen-Runge, D. Fedunova, F. Zhang, M. Hennig, T. Seydel, R. Schweins, M. Sztucki, M. Antalik, F. Schreiber, G. Nägele,Soft Matter 8, 1404 (2012)ADSGoogle Scholar
  3. 3.
    F. Roosen-Runge, M. Hennig, F. Zhang, R.M.J. Jacobs, M. Sztucki, H. Schober, T. Seydel, F. Schreiber, Proc. Natl. Acad. Sci. U.S.A. 108, 11815 (2011)Google Scholar
  4. 4.
    C. Gögelein, G. Nägele, R. Tuinier, T. Gibaud, A. Stradner, P. Schurtenberger, J. Chem. Phys. 129, 085102 (2008)ADSGoogle Scholar
  5. 5.
    S.U. Egelhaaf, V. Lobaskin, H.H. Bauer, H.P. Merkle, P. Schurtenberger, Eur. Phys. J. E 13, 153 (2004)Google Scholar
  6. 6.
    C. Gögelein, D. Wagner, F. Cardinaux, G. Nägele, S.U. Egelhaaf, J. Chem. Phys. 136, 015102 (2012)ADSGoogle Scholar
  7. 7.
    M.E. Davis, J.D. Madura, J. Sines, B.A. Luty, S.A. Allison, J.A. Mccamon, Meth. Enzymol. 202, 473 (1991)Google Scholar
  8. 8.
    W. Nonner, D.P. Chen, B. Eisenberg, J. Gen. Physiol. 113, 773 (1999)Google Scholar
  9. 9.
    H.D.B. Jenkins, Y. Marcus, Chem. Rev. 95, 2695 (1995)Google Scholar
  10. 10.
    P.G. Wolynes, Annu. Rev. Phys. Chem. 31, 345 (1980)ADSGoogle Scholar
  11. 11.
    J.M.G. Barthel, H. Krienke, W. Kunz, Physical Chemistry of Electrolyte Solutions, Vol. 5 of Topics in Physical Chemistry (Steinkopff, Darmstadt, 1998)Google Scholar
  12. 12.
    H. Falkenhagen, W. Ebeling, Theorie der Elektrolyte (S. Hirzel Verlag, Stuttgart, 1971)Google Scholar
  13. 13.
    G. Nägele, Colloidal hydrodynamics, In: Physics of Complex Colloids – Proceedings of International School of Physics Enrico Fermi, edited by C. Bechinger, F. Sciortino, P. Ziherl (IOS Amsterdam; SIF Bologna, 2013)Google Scholar
  14. 14.
    H. Ohshima, Theory of Colloid and Interfacial Electric Phenomena, Vol. 12 of Interface Science and Technology (Elsevier Academic Press, Amsterdam, 2006)Google Scholar
  15. 15.
    J.H. Masliyah, S. Bhattacharjee, Electrokinetic and Colloid Transport Phenomena (Johns Wiley & Sons, Hoboken, New Jersey, 2006)Google Scholar
  16. 16.
    M.Z. Bazant, M.S. Kilic, B.D. Storey, A. Ajdari, Adv. Colloid Interface Sci. 152, 48 (2009)Google Scholar
  17. 17.
    A.S. Khair, T.M. Squires, J. Fluid. Mech. 640, 343 (2009)ADSMATHGoogle Scholar
  18. 18.
    R. Roa, F. Carrique, E. Ruiz-Reina, Phys. Chem. Chem. Phys. 13, 19437 (2011)Google Scholar
  19. 19.
    J.J. Lopez-Garcia, M.J. Aranda-Rascon, C. Grosse, J. Horno, J. Colloid Interface Sci. 356, 325 (2011)Google Scholar
  20. 20.
    M. Lozada-Cassou, E. Gonzales-Tovar, W. Olivares, Phys. Rev. E 60, R17 (1999)ADSGoogle Scholar
  21. 21.
    M. Lozada-Cassou, E. González-Tovar, J. Colloid Interface Sci. 239, 285 (2001)Google Scholar
  22. 22.
    M. Lozada-Cassou, E. González-Tovar, J. Colloid Interface Sci. 240, 644 (2001)Google Scholar
  23. 23.
    H. Manzanilla-Granados, F. Jimenez-Angeles, M. Lozada-Cassou, Colloids Surf. A 376, 59 (2011)Google Scholar
  24. 24.
    F. Carrique, F.J. Arroyo, A.V. Delgado, Colloids Surf. A 195, 157 (2001)Google Scholar
  25. 25.
    F. Carrique, J. Cuquejo, F.J. Arroyo, M.L. Jiménez, A.V. Delgado, Adv. Colloid Interface Sci. 118, 43 (2005)Google Scholar
  26. 26.
    C.P. Chiang, E. Lee, Y.Y. He, J.P. Hsu, J. Phys. Chem. B 110, 1490 (2006)Google Scholar
  27. 27.
    J.M. Ding, H.J. Keh, J. Colloid Interface Sci. 236, 180 (2001)Google Scholar
  28. 28.
    M.W. Kozak, E.J. Davis, J. Colloid Interface Sci. 127, 497 (1989)Google Scholar
  29. 29.
    M.W. Kozak, E.J. Davis, J. Colloid Interface Sci. 129, 166 (1989)Google Scholar
  30. 30.
    S. Levine, G.H. Neale, J. Colloid Interface Sci. 47, 520 (1974)Google Scholar
  31. 31.
    H. Ohshima, J. Colloid Interface Sci. 188, 481 (1997)Google Scholar
  32. 32.
    H. Ohshima, J. Colloid Interface Sci. 229, 140 (2000)Google Scholar
  33. 33.
    V.N. Shilov, N.I. Zharkikh, Y.B. Borkovskaya, Colloid J. – USSR 43, 434 (1981)Google Scholar
  34. 34.
    E.K. Zholkovskiy, J.H. Masliyah, V.N. Shilov, S. Bhattacharjee, Adv. Colloid Interface Sci. 134, 279 (2007)Google Scholar
  35. 35.
    E.K. Zholkovskiy, V.N. Shilov, J.H. Masliyah, M.P. Bondarenko, Can. J. Chem. Eng. 85, 701 (2007)Google Scholar
  36. 36.
    T. Vissers, A. Imhof, F. Carrique, A.V. Delgado, A. van Blaaderen, J. Colloid Interface Sci. 361, 443 (2011)Google Scholar
  37. 37.
    J.P. Hsu, E. Lee, F.Y. Yen, J. Chem. Phys. 112, 6404 (2000)ADSGoogle Scholar
  38. 38.
    J.J. Lopez-Garcia, C. Grosse, J. Horno, J. Colloid Interface Sci. 301, 651 (2006)Google Scholar
  39. 39.
    S. Ahuali, M.L. Jiménez, F. Carrique, A.V. Delgado, Langmuir 25, 1986 (2009)Google Scholar
  40. 40.
    J. Ennis, L.R. White, J. Colloid Interface Sci. 185, 157 (1997)Google Scholar
  41. 41.
    J. Ennis, L.R. White, J. Colloid Interface Sci. 189, 382 (1997)Google Scholar
  42. 42.
    A.A. Shugai, S.L. Carnie, D.Y.C. Chan, J.L. Anderson, J. Colloid Interface Sci. 191, 357 (1997)Google Scholar
  43. 43.
    T. Palberg, T. Köller, B. Sieber, H. Schweinfurth, H. Reiber, G. Nägele, J. Phys.: Condens. Matter 24, 464109 (2012)ADSGoogle Scholar
  44. 44.
    L. Onsager, R.M. Fuoss, J. Phys. Chem. – US 36, 2689 (1932)Google Scholar
  45. 45.
    L. Onsager, S.K. Kim, J. Phys. Chem. – US 61, 215 (1957)Google Scholar
  46. 46.
    L. Onsager, Ann. N.Y. Acad. Sci. 46, 241 (1945)ADSGoogle Scholar
  47. 47.
    H. Falkenhagen, E.L. Vernon, Phil. Mag. S. 7 14, 537 (1932)Google Scholar
  48. 48.
    W. Ebeling, R. Feistel, G. Kelbg, R. Sandig, J. Non-Eq. Thermod. 3, 11 (1978)Google Scholar
  49. 49.
    D. Kremp, W. Ebeling, H. Krienke, R. Sändig, J. Stat. Phys. 33, 99 (1983)ADSGoogle Scholar
  50. 50.
    O. Bernard, W. Kunz, P. Turq, L. Blum, J. Phys. Chem. – US 96, 3833 (1992)Google Scholar
  51. 51.
    S. Durand-Vidal, P. Turq, O. Bernard, C. Treiner, L. Blum, Physica A 231, 123 (1996)ADSGoogle Scholar
  52. 52.
    S. Durand-Vidal, P. Turq, O. Bernard, J. Phys. Chem. – US 100, 17345 (1996)Google Scholar
  53. 53.
    J.F. Dufreche, O. Bernard, S. Durand-Vidal, P. Turq, J. Phys. Chem. B 109, 9873 (2005)Google Scholar
  54. 54.
    G.M. Roger, S. Durand-Vidal, O. Bernard, P. Turq, J. Phys. Chem. B 113, 8670 (2009)Google Scholar
  55. 55.
    L. Blum, J.S. Høye, J. Phys. Chem. 81, 1311 (1977)Google Scholar
  56. 56.
    K. Hiroike, Mol. Phys. 33, 1195 (1977)MathSciNetADSGoogle Scholar
  57. 57.
    O. Bernard, W. Kunz, P. Turq, L. Blum, J. Phys. Chem. – US 96, 398 (1992)Google Scholar
  58. 58.
    J.F. Dufreche, O. Bernard, and P. Turq, J. Chem. Phys. 116, 2085 (2002)ADSGoogle Scholar
  59. 59.
    J.F. Dufreche, O. Bernard, P. Turq, J. Mol. Liq. 118, 189 (2005)Google Scholar
  60. 60.
    B.U. Felderhof, J. Chem. Phys. 118, 8114 (2003)ADSGoogle Scholar
  61. 61.
    J.F. Dufreche, O. Bernard, M. Jardat, P. Turq, J. Chem. Phys. 118, 8116 (2003)ADSGoogle Scholar
  62. 62.
    J.F. Dufreche, M. Jardat, P. Turq, B. Bagchi, J. Phys. Chem. B 112, 10264 (2008)Google Scholar
  63. 63.
    A. Chandra, B. Bagchi, J. Chem. Phys. 110, 10024 (1999)ADSGoogle Scholar
  64. 64.
    A. Chandra, B. Bagchi, J. Phys. Chem. B 104, 9067 (2000)Google Scholar
  65. 65.
    A. Chandra, B. Bagchi, J. Chem. Phys. 113, 3226 (2000)ADSGoogle Scholar
  66. 66.
    P. Attard, Phys. Rev. E 48, 3604 (1993)ADSGoogle Scholar
  67. 67.
    C. Contreras-Aburto, G. Nägele, J. Chem. Phys. 139, 134109 (2013)ADSGoogle Scholar
  68. 68.
    C. Contreras-Aburto, G. Nägele, J. Chem. Phys. 139, 134110 (2013)ADSGoogle Scholar
  69. 69.
    C. Contreras-Aburto, G. Nägele, J. Phys.: Condens. Matter 24, 464108 (2012)ADSGoogle Scholar
  70. 70.
    G. Nägele, J.K.G. Dhont, J. Chem. Phys. 108, 9566 (1998)ADSGoogle Scholar
  71. 71.
    G. Nägele, J. Bergenholtz, J. Chem. Phys. 108, 9893 (1998)ADSGoogle Scholar
  72. 72.
    G. Nägele, J. Bergenholtz, J.K.G. Dhont, J. Chem. Phys. 110, 7037 (1999)ADSGoogle Scholar
  73. 73.
    D.G. Miller, J. Phys. Chem. – US 70, 2639 (1966)Google Scholar
  74. 74.
    D.J.P. Out, J.M. Los, J. Solution Chem. 9, 19 (1980)Google Scholar
  75. 75.
    M. Heinen, A.J. Banchio, G. Nägele, J. Chem. Phys. 135, 154504 (2011)ADSGoogle Scholar
  76. 76.
    W. Bowen, A. Mongruel, Colloids Surf. A 138, 161 (1998)Google Scholar
  77. 77.
    Y.X. Yu, A.W. Tian, G.H. Gao, Phys. Chem. Chem. Phys. 7, 2423 (2005)Google Scholar
  78. 78.
    P. Prinsen, T. Odijk, J. Chem. Phys. 127, 115102 (2007)ADSGoogle Scholar
  79. 79.
    M. Heinen, P. Holmqvist, A.J. Banchio, G. Nägele, J. Chem. Phys. 134, 044532 (2011)ADSGoogle Scholar
  80. 80.
    M. Heinen, P. Holmqvist, A.J. Banchio, G. Nägele, J. Chem. Phys. 134, 129901 (2011)ADSGoogle Scholar
  81. 81.
    A.L. Kholodenko, J.F. Douglas, Phys. Rev. E 51, 1081 (1995)ADSGoogle Scholar
  82. 82.
    F. Nettesheim, M.W. Liberatore, T.K. Hodgdon, N.J. Wagner, E.W. Kaler, M. Vethamuthu, Langmuir 24, 7718 (2008)Google Scholar
  83. 83.
    A.K. Gaigalas, V. Reipa, J.B. Hubbard, J. Edwards, J. Douglas, Chem. Eng. Sci. 50, 1107 (1995)Google Scholar
  84. 84.
    D.E. Cohen, G.M. Thurston, R.A. Chamberlin, G.B. Benedek, M.C. Carey, Biochemistry 37, 14798 (1998)Google Scholar
  85. 85.
    D. Kleshchanok, M. Heinen, G. Nägele, P. Holmqvist, Soft Matter 8, 1584 (2012)ADSGoogle Scholar
  86. 86.
    K. Kim, Y. Nakayama, R. Yamamoto, Phys. Rev. Lett. 96, 208302 (2006)ADSGoogle Scholar
  87. 87.
    E. Yamamoto, Y. Nakayama, K. Kim, Int. J. Mod. Phys. C 20, 1457 (2009)ADSMATHGoogle Scholar
  88. 88.
    T. Araki, H. Tanaka, Europhys. Lett. 82, 18004 (2008)ADSGoogle Scholar
  89. 89.
    G. Giupponi, I. Pagonabarraga, Phys. Rev. Lett. 106, 248304 (2011)ADSGoogle Scholar
  90. 90.
    G.C. Abade, B. Cichocki, M.L. Ekiel-Jezewska, G. Nägele, E. Wajnryb, J. Chem. Phys. 132, 014503 (2010)ADSGoogle Scholar
  91. 91.
    P. Reuland, B.U. Felderhof, R.B. Jones, Physica A 93, 465 (1978)ADSGoogle Scholar
  92. 92.
    V. Lobaskin, B. Dünweg, C. Holm, J. Phys.: Condens. Matter 16, S4063 (2004)ADSGoogle Scholar
  93. 93.
    V. Lobaskin, B. Dünweg, B. Medebach, T. Palberg, C. Holm, Phys. Rev. Lett. 98, 176105 (2007)ADSGoogle Scholar
  94. 94.
    A. Chatterji, J. Horbach, J. Phys.: Condens. Matter 22, 494102 (2010)Google Scholar
  95. 95.
    R. Schmitz, B. Dünweg, J. Phys.: Condens. Matter 24, 464111 (2012)ADSGoogle Scholar
  96. 96.
    B. Dünweg, V. Lobaskin, K. Seethalakshmy-Hariharan, C. Holm, J. Phys.: Condens. Matter 20, 404214 (2008)Google Scholar
  97. 97.
    M.G. McPhie, G. Nägele, J. Chem. Phys. 127, 034906 (2007)ADSGoogle Scholar
  98. 98.
    M.G. McPhie, G. Nägele, J. Phys.-Condens. Mat. 16, S4021 (2004)ADSGoogle Scholar
  99. 99.
    A.J. Banchio, G. Nägele, J. Chem. Phys. 128, 104903 (2008)ADSGoogle Scholar
  100. 100.
    M. Heinen, P. Holmqvist, A.J. Banchio, G. Nägele, J. Appl. Cryst. 43, 970 (2010)Google Scholar
  101. 101.
    F. Westermeier, B. Fischer, W. Roseker, G. Grübel, G. Nägele, M. Heinen, J. Chem. Phys. 137, 114504 (2012)ADSGoogle Scholar
  102. 102.
    A.J. Banchio, P. Holmqvist, M. Heinen, G. Nägele (submitted) (2013)Google Scholar
  103. 103.
    B. Cichocki, B.U. Felderhof, K. Hinsen, E. Wajnryb, J. Blawzdziewicz, J. Chem. Phys. 100, 3780 (1994)ADSGoogle Scholar
  104. 104.
    G.C. Abade, B. Cichocki, M.L. Ekiel-Jezewska, G. Nägele, E. Wajnryb, J. Phys.: Condens. Matter 22, 322101 (2010)Google Scholar
  105. 105.
    G.C. Abade, B. Cichocki, M.L. Ekiel-Jezewska, G. Nägele, E. Wajnryb, J. Chem. Phys. 133, 084906 (2010)ADSGoogle Scholar
  106. 106.
    G.C. Abade, B. Cichocki, M.L. Ekiel-Jezewska, G. Nägele, E. Wajnryb, J. Chem. Phys. 136, 104902 (2012)ADSGoogle Scholar
  107. 107.
    H. Ohshima, Colloids Surf. A 347, 33 (2009)Google Scholar
  108. 108.
    K. Makuch, B. Cichocki, J. Chem. Phys. 137, 184902 (2012)ADSGoogle Scholar
  109. 109.
    W.B. Russel, Ind. Eng. Chem. Res. 48, 2380 (2009)Google Scholar
  110. 110.
    P. Holmqvist, G. Nägele, Phys. Rev. Lett. 104, 058301 (2010)ADSGoogle Scholar
  111. 111.
    P.N. Segrè, P.N. Pusey, Phys. Rev. Lett. 77, 771 (1996)ADSGoogle Scholar
  112. 112.
    M. Fuchs, M.R. Mayr, Phys. Rev. E 60, 5742 (1999)ADSGoogle Scholar
  113. 113.
    L.B. Lurio, D. Lumma, A.R. Sandy, M.A. Borthwick, P. Falus, S.G.J. Mochrie, J.F. Pelletier, M. Sutton, L. Regan, A. Malik, G.B. Stephenson, Phys. Rev. Lett. 84, 785 (2000)ADSGoogle Scholar
  114. 114.
    V.A. Martinez, J.H.J. Thijssen, F. Zontone, W. van Megen, G. Bryant, J. Chem. Phys. 134, 054505 (2011)ADSGoogle Scholar
  115. 115.
    P. Holmqvist, P.S. Mohanty, G. Nägele, P. Schurtenberger, M. Heinen, Phys. Rev. Lett. 109, 048302 (2012)ADSGoogle Scholar
  116. 116.
    A.R. Denton, Phys. Rev. E 67, 011804 (2003)ADSGoogle Scholar
  117. 117.
    C.N. Likos, Structure and Thermodynamics of Ionic Microgels, In: Microgel Suspensions: Fundamentals and Applications, chapter 7 (Wiley-VCH Verlag GmbH & Co. KGaA, 2011)Google Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • G. Nägele
    • 1
  • M. Heinen
    • 2
  • A. J. Banchio
    • 3
  • C. Contreras-Aburto
    • 4
  1. 1.Institute of Complex Systems (ICS-3)Research Centre JülichJülichGermany
  2. 2.Institut für Theoretische Physik II: Weiche MaterieHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany
  3. 3.FaMAFUniversidad Nacional de Córdoba, and IFEG-CONICETCórdobaArgentina
  4. 4.División de Ciencias e IngenieríasUniversidad de Guanajuato Campus LeónLeónMéxico

Personalised recommendations