Advertisement

The European Physical Journal Special Topics

, Volume 222, Issue 9, pp 2361–2366 | Cite as

Photoelectron spectroscopy of brominated derivative of pyrimidine: 2-bromopyrimidine

  • M. A. Śmiałek
  • E. Szymańska
  • M. MacDonald
  • L. Zuin
  • N. J. Mason
Regular Article

Abstract

In this study the brominated derivative of pyrimidine, 2-bromopyrimidine, was investigated by photoelectron spectroscopy. Outer valence photoelectron spectra recorded at 21.22, 45 and 100 eV photon energy for this compound are presented. The recorded spectra have a higher resolution than that previously reported in the literature. The bromine 3d and 3p edge photoelectron spectra have also been recorded in a photon impact experiment at 100 and 225 eV. All measurements were performed using Double Toroidal Coincidence Spectrometer showing its potential as a versatile apparatus for spectroscopic studies.

Keywords

Pyrimidine European Physical Journal Special Topic Photoelectron Spectrum Auger Decay Outer Valence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.C. Dewey, R.M. Humphrey, Radiat. Res. 26, 538 (1965)CrossRefGoogle Scholar
  2. 2.
    A.W. Potts, D.M.P. Holland, A.B. Trofimov, J. Schirmer, L. Karlsson, K. Siegbahn, J. Phys. B: At. Mol. Opt. Phys. 36, 3129 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    P. O’Keeffe, P. Bolognesi, A.R. Casavola, D. Catone, N. Zema, S. Turchini, L. Avaldi, Molec. Phys. 107, 2025 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    P. Bolognesi, G. Mattioli, P. O’Keeffe, V. Feyer, O. Plekan, Y. Ovcharenko, K.C. Prince, M. Coreno, A. Amore Bonapasta, L. Avaldi, J. Phys. Chem. A 113, 13593 (2009)CrossRefGoogle Scholar
  5. 5.
    L. Storchi, F. Tarantelli, S. Veronesi, P. Bolognesi, E. Fainelli, L. Avaldi, J. Chem. Phys. 129, 154309 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    P. Bolognesi, P. OKeeffe, Y. Ovcharenko, M. Coreno, L. Avaldi, V. Feyer, O. Plekan, K.C. Prince, W. Zhang, V. Carravetta, J. Chem. Phys. 133, 034302 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    J.D. Builth-Williams, S.M. Bellm, D.B. Jones, H. Chaluvadi, D.H. Madison, C.G. Ning, B. Lohmann, M.J. Brunger, J. Chem. Phys. 136, 024304 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    T.J. Reddish, G. Richmond, G.W. Bagley, J.P. Wightman, S. Cvejanovic, Rev. Sci. Instrum. 68, 2685 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    A.E. Slattery, J.P. Wightman, M.A. MacDonald, S. Cvejanovic, T.J. Reddish, J. Phys. B: At. Mol. Opt. Phys. 33, 4833 (2000)ADSCrossRefGoogle Scholar
  10. 10.
  11. 11.
    Y.F. Hu, L. Zuin, G. Wright, R. Igarashi, M. McKibben, T. Wilson, S.Y. Chen, T. Johnson, D. Maxwell, B.W. Yates, T.K. Sham, R. Reininger Rev. Sci. Instrum. 78, 083109 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    D.M.P. Holland, A.W. Potts, L. Karlsson, I.L. Zaytseva, A.B. Trofimov, J. Schirmer, Chem. Phys. 352, 205 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    B.H. Boo, N. Saito, J. Electron. Spectrosc. Relat. Phenom. 127, 139 (2002)CrossRefGoogle Scholar
  14. 14.
    B.H. Boo, I. Koyano, J. Korean Phys. Soc. 40, 826 (2002)Google Scholar
  15. 15.
    T. Ohta, T. Fujikawa, H. Kuroda, Bull. Chem. Soc. Jpn. 48, 2017 (1975)CrossRefGoogle Scholar
  16. 16.
    R. Spohr, T. Bergmark, N. Magnusson, L.O. Werme, C. Nordiing, K. Siegbahn, Phys. Scr. 2, 31 (1970)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • M. A. Śmiałek
    • 1
    • 2
  • E. Szymańska
    • 2
  • M. MacDonald
    • 3
  • L. Zuin
    • 3
  • N. J. Mason
    • 2
  1. 1.Department of Atomic Physics and Luminescence, Faculty of Applied Physics and MathematicsGdańsk University of TechnologyGdańskPoland
  2. 2.Department of Physical SciencesThe Open UniversityMilton KeynesUK
  3. 3.Canadian Light Source Inc.SaskatoonCanada

Personalised recommendations