Verification of scalable ultra-sensitive detection of heterogeneity in an electronic circuit

  • V. Kohar
  • A. Choudhary
  • K. P. Singh
  • S. Sinha
Regular Article Nonlinear Electronic Circuits


We study the impact of small heterogeneity in signals applied to globally coupled nonlinear bistable elements. In the absence of coupling, the collective response is simply the average of all the uncorrelated signals. When the elements are coupled and a bias is applied, we find that even a very small number of different inputs are able to drag the collective response towards the stable state of the minority inputs. In our explicit demonstration we have taken Schmitt triggers as the basic nonlinear bistable elements, and the inputs are encoded as voltages applied to them. The average of output voltages of all the Schmitt triggers corresponds to the global output of the system. We also observe that the minimum heterogeneity that can be detected scales with ratio of threshold voltage to source voltage of the Schmitt triggers, and can be be brought down to the limit of single bit detection.


Soliton Threshold Voltage European Physical Journal Special Topic Stochastic Resonance Collective Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Gammaitoni, P. Hanggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    R. Roy, T.W. Murphy Jr., T.D. Maier, Z. Gills, E.R. Hunt, Phys. Rev. Lett. 68, 1259 (1992)ADSCrossRefGoogle Scholar
  3. 3.
    P. Jung, U. Behn, E. Pantazelou, F. Moss, Phys. Rev. A 46 (R1709)Google Scholar
  4. 4.
    A.R. Bulsara, G. Schemera, Phys. Rev. E 47, 3734 (1993)ADSCrossRefGoogle Scholar
  5. 5.
    Gang Hu, Haken H., Fagen X., Phys. Rev. Lett. 77, 1925 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    M. Loecher, D. Cigna, E.R. Hunt, Phys. Rev. Lett. 80, 5212 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    J.F. Lindner, B.K. Meadows, W.L. Ditto, M.E. Inchiosa, A.R. Bulsara, Phys. Rev. Lett. 75, 3 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    C. Zhou, J. Kurths, B. Hu, Phys. Rev. Lett. 87, 098101 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    C.J. Tessone, C.R. Mirasso, R. Toral, J.D. Gunton, Phys. Rev. Lett. 97, 194101 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    J. Xie, S. Sreenivasan, G. Korniss, W. Zhang, C. Lim, B.K. Szymanski, Phys. Rev. E 84, 011130 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    K.P. Singh, R. Kapri, S. Sinha, EPL 98, 60004 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    S. Fauve, F. Heslot, Phys. Lett. 97A, 5 (1983)ADSGoogle Scholar
  13. 13.
    O.H. Schmitt, J. Scient. Instr. 15, 24 (1938)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • V. Kohar
    • 1
  • A. Choudhary
    • 1
  • K. P. Singh
    • 1
  • S. Sinha
    • 1
  1. 1.Indian Institute of Science Education and Research (IISER) Mohali, Knowledge CityManauliIndia

Personalised recommendations