Advertisement

Protein transfer to membranes upon shape deformation

  • L.M.C. Sagis
  • E. Bijl
  • L. Antono
  • N.C.A. de Ruijter
  • H. van Valenberg
Regular Article

Abstract

Red blood cells, milk fat droplets, or liposomes all have interfaces consisting of lipid membranes. These particles show significant shape deformations as a result of flow. Here we show that these shape deformations can induce adsorption of proteins to the membrane. Red blood cell deformability is an important factor in several diseases involving obstructions of the microcirculatory system, and deformation induced protein adsorption will alter the rigidity of their membranes. Deformation induced protein transfer will also affect adsorption of cells onto implant surfaces, and the performance of liposome based controlled release systems. Quantitative models describing this phenomenon in biomaterials do not exist. Using a simple quantitative model, we provide new insight in this phenomenon. We present data that show convincingly that for cells or droplets with diameters upwards of a few micrometers, shape deformations induce adsorption of proteins at their interface even at moderate flow rates.

Keywords

Lipase Interfacial Tension European Physical Journal Special Topic Capillary Number Shape Deformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.M.C. Sagis, Rev. Mod. Phys. 83, 1367 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    E. Scholten, J. Sprakel, L.M.C. Sagis, E. van der Linden, Biomacromolecule 7, 339 (2006)CrossRefGoogle Scholar
  3. 3.
    E. Scholten, L.M.C. Sagis, E. van der Linden, J. Phys. Chem. B 110, 3250 (2006)CrossRefGoogle Scholar
  4. 4.
    L.M.C. Sagis, J. Controlled Release 131, 5 (2008)CrossRefGoogle Scholar
  5. 5.
    E. Dressaire, R. Bee, D.C. Bell, A. Lips, H.A. Stone, Science 320, 1198 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    D.R. Lentz, Can. Mineral 37, 489 (1999)Google Scholar
  7. 7.
    T. Kajitani, J. Drezet, M. Rappaz, Metall. Mater. Trans. A 32A, 1479 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    E.P. Elsukov, I.V. Povstugar, A.L. Ul’yanov, Phys. Metals Metallogr. 107, 80 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    V.A. Shabashov, V.V. Sagaradze, A.V. Litvinov, Mat. Sci. Eng. A 528, 6393 (2011)CrossRefGoogle Scholar
  10. 10.
    K. Detemple, O. Kanert, K.L. Murty, J.T.M. De Hosson, Phys. Rev. B 44, 1988 (1991)ADSCrossRefGoogle Scholar
  11. 11.
    M. Tirrell, M.F. Malone, J. Polym. Sci. 15, 1569 (1977)Google Scholar
  12. 12.
    J. Mewis, N. Wagner, Colloidal Suspension Rheology (Cambridge University Press, Cambridge, 2002)Google Scholar
  13. 13.
    B. Levich, Physicochemical Hydrodynamics (Prentice Hall, Englewoods Cliffs NJ, 1962)Google Scholar
  14. 14.
    J. Lucassen, M. van den Tempel, J. Colloid Interface Sci. 41, 491 (1972)CrossRefGoogle Scholar
  15. 15.
    Y. Kikuchi, T. Koyama, Am. J. Physiol. 247, H739 (1984)Google Scholar
  16. 16.
    Y. Kikuchi, T. Koyama, Am. J. Physiol. 247, H748 (1984)Google Scholar
  17. 17.
    M. Paulitschke, G.B. Nash, D.J. Anstee, M.J.A. Tanner, W.B. Gratzer, Blood 86, 342 (1995)Google Scholar
  18. 18.
    P.A. Aarts, R.M. Heethaar, J.J. Sixma, Blood 64, 1228 (1984)Google Scholar
  19. 19.
    O. K. Baskurt, D. Gelmont, H.J. Meiselman, Am. J. Respir. Crit. Care Med. 157, 421 (1998)CrossRefGoogle Scholar
  20. 20.
    A.M. Dondorp, B.J. Angus, K. Chotivanich, K. Silamut, R. Ruangveerayuth, M.R. Hardeman, P.A. Kager, J. Vreeken, N.J. White, Am. J. Trop. Med. Hyg. 60, 733 (1999)Google Scholar
  21. 21.
    A.M. Dondorp, P.A. Kager, J. Vreeken, N.J. White, Parasitol. Today 16, 228 (2000)CrossRefGoogle Scholar
  22. 22.
    L.M.C. Sagis, Eur. Phys. J. Special Topics 222, 39 (2013)CrossRefGoogle Scholar
  23. 23.
    B.N. Dardik, C.D. Schwartzkopf, D.E. Stevens, R.E. Chatelain, J. Lipid Research 41, 1013 (2000)Google Scholar
  24. 24.
    M.C. Michalski, V. Briard, F. Michel, Lait 81, 787 (2001)CrossRefGoogle Scholar
  25. 25.
    J.A. O’Mahony, M.A.E. Auty, P.L.H. McSweeney, J. Dairy Res. 72, 338 (2005)CrossRefGoogle Scholar
  26. 26.
    C. Von Eiff, G. Peters, C. Heilmann, Lancet Infect. Dis. 2, 677 (2002)CrossRefGoogle Scholar
  27. 27.
    J. Vincent, Lancet 361, 2068 (2003)CrossRefGoogle Scholar
  28. 28.
    D. Barthès-Biesel, J.M. Rallison, J. Fluid Mech. 113, 251 (1981)ADSMATHCrossRefGoogle Scholar
  29. 29.
    L. Wiking, L. Bjorck, J.H. Nielsen, Int. Dairy J. 13, 797 (2003)CrossRefGoogle Scholar
  30. 30.
    L. Wiking, J.H. Nielsen, A.K. Bavius, A. Edvardsson, K. Svennersten-Sjaunja, J. Dairy Sci. 89, 1004 (2006)CrossRefGoogle Scholar
  31. 31.
    J.A.C. Flipsen, M.A. van Schaick, R. Dijkman, H.T.W.M. van der Hijden, H.M. Verheij, M.R. Egmond, Chem. Phys. Lipids 97, 181 (1999)CrossRefGoogle Scholar
  32. 32.
    R. Kwok, E.A. Evans, Biophys. J. 35, 637 (1981)ADSCrossRefGoogle Scholar
  33. 33.
    W.H. Beyer, CRC Standard Mathematical Tables, 28th edn. (CRC Press, Boca Raton FL, 1987)Google Scholar
  34. 34.
    P.L. Maffettone, M. Minale, J. Non-Newtonian Fluid Mech. 78, 227 (1998)MATHCrossRefGoogle Scholar
  35. 35.
    G.I. Taylor, Proc. R. Soc. A 138, 41 (1932)ADSCrossRefGoogle Scholar
  36. 36.
    G.I. Taylor, Proc. R. Soc. A 146, 501 (1934)ADSCrossRefGoogle Scholar
  37. 37.
    M.T. Landahl, E. Mollo-Christensen, Turbulence and Random Processes in Fluid Mechanics, 2nd edn. (Cambridge University Press, Cambridge, 1992)Google Scholar
  38. 38.
    P. Walstra, J.T.M. Wouters, T.J. Geurts, Dairy Science and Technology, 2nd edn. (CRC Press/Taylor and Francis, Boca Raton FL, 2005)Google Scholar
  39. 39.
    V. Cristini, J. Blawzdziewicz, M. Loewenberg, L.R. Collins, J. Fluid Mech. 494, 231 (2003)MathSciNetADSCrossRefGoogle Scholar
  40. 40.
    G.A. Hughmark, Ind. Eng. Chem. Fundam. 16, 307 (1977)CrossRefGoogle Scholar
  41. 41.
    D.A. Edwards, H. Brenner, D.T. Wasan, Interfacial Transport Phenomena and Rheology (Butterworth-Henemann, Boston, 1991)Google Scholar
  42. 42.
    J.C. Slattery, L.M.C. Sagis, E.S. Oh, Interfacial Transport Phenomena, 2nd edn. (Springer, New York, 2007)Google Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • L.M.C. Sagis
    • 1
    • 2
  • E. Bijl
    • 3
  • L. Antono
    • 3
  • N.C.A. de Ruijter
    • 4
  • H. van Valenberg
    • 3
  1. 1.Food Physics Group, Wageningen UniversityWageningenThe Netherlands
  2. 2.Polymer Physics, Department of MaterialsZurichSwitzerland
  3. 3.Dairy Science and Technology Group, Wageningen UniversityWageningenThe Netherlands
  4. 4.Wageningen Light Microscopy Centre, Laboratory of Cell Biology, Wageningen UniversityWageningenThe Netherlands

Personalised recommendations