Skip to main content
Log in

Protein transfer to membranes upon shape deformation

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Red blood cells, milk fat droplets, or liposomes all have interfaces consisting of lipid membranes. These particles show significant shape deformations as a result of flow. Here we show that these shape deformations can induce adsorption of proteins to the membrane. Red blood cell deformability is an important factor in several diseases involving obstructions of the microcirculatory system, and deformation induced protein adsorption will alter the rigidity of their membranes. Deformation induced protein transfer will also affect adsorption of cells onto implant surfaces, and the performance of liposome based controlled release systems. Quantitative models describing this phenomenon in biomaterials do not exist. Using a simple quantitative model, we provide new insight in this phenomenon. We present data that show convincingly that for cells or droplets with diameters upwards of a few micrometers, shape deformations induce adsorption of proteins at their interface even at moderate flow rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.M.C. Sagis, Rev. Mod. Phys. 83, 1367 (2011)

    Article  ADS  Google Scholar 

  2. E. Scholten, J. Sprakel, L.M.C. Sagis, E. van der Linden, Biomacromolecule 7, 339 (2006)

    Article  Google Scholar 

  3. E. Scholten, L.M.C. Sagis, E. van der Linden, J. Phys. Chem. B 110, 3250 (2006)

    Article  Google Scholar 

  4. L.M.C. Sagis, J. Controlled Release 131, 5 (2008)

    Article  Google Scholar 

  5. E. Dressaire, R. Bee, D.C. Bell, A. Lips, H.A. Stone, Science 320, 1198 (2008)

    Article  ADS  Google Scholar 

  6. D.R. Lentz, Can. Mineral 37, 489 (1999)

    Google Scholar 

  7. T. Kajitani, J. Drezet, M. Rappaz, Metall. Mater. Trans. A 32A, 1479 (2001)

    Article  ADS  Google Scholar 

  8. E.P. Elsukov, I.V. Povstugar, A.L. Ul’yanov, Phys. Metals Metallogr. 107, 80 (2009)

    Article  ADS  Google Scholar 

  9. V.A. Shabashov, V.V. Sagaradze, A.V. Litvinov, Mat. Sci. Eng. A 528, 6393 (2011)

    Article  Google Scholar 

  10. K. Detemple, O. Kanert, K.L. Murty, J.T.M. De Hosson, Phys. Rev. B 44, 1988 (1991)

    Article  ADS  Google Scholar 

  11. M. Tirrell, M.F. Malone, J. Polym. Sci. 15, 1569 (1977)

    Google Scholar 

  12. J. Mewis, N. Wagner, Colloidal Suspension Rheology (Cambridge University Press, Cambridge, 2002)

  13. B. Levich, Physicochemical Hydrodynamics (Prentice Hall, Englewoods Cliffs NJ, 1962)

  14. J. Lucassen, M. van den Tempel, J. Colloid Interface Sci. 41, 491 (1972)

    Article  Google Scholar 

  15. Y. Kikuchi, T. Koyama, Am. J. Physiol. 247, H739 (1984)

    Google Scholar 

  16. Y. Kikuchi, T. Koyama, Am. J. Physiol. 247, H748 (1984)

    Google Scholar 

  17. M. Paulitschke, G.B. Nash, D.J. Anstee, M.J.A. Tanner, W.B. Gratzer, Blood 86, 342 (1995)

    Google Scholar 

  18. P.A. Aarts, R.M. Heethaar, J.J. Sixma, Blood 64, 1228 (1984)

    Google Scholar 

  19. O. K. Baskurt, D. Gelmont, H.J. Meiselman, Am. J. Respir. Crit. Care Med. 157, 421 (1998)

    Article  Google Scholar 

  20. A.M. Dondorp, B.J. Angus, K. Chotivanich, K. Silamut, R. Ruangveerayuth, M.R. Hardeman, P.A. Kager, J. Vreeken, N.J. White, Am. J. Trop. Med. Hyg. 60, 733 (1999)

    Google Scholar 

  21. A.M. Dondorp, P.A. Kager, J. Vreeken, N.J. White, Parasitol. Today 16, 228 (2000)

    Article  Google Scholar 

  22. L.M.C. Sagis, Eur. Phys. J. Special Topics 222, 39 (2013)

    Article  Google Scholar 

  23. B.N. Dardik, C.D. Schwartzkopf, D.E. Stevens, R.E. Chatelain, J. Lipid Research 41, 1013 (2000)

    Google Scholar 

  24. M.C. Michalski, V. Briard, F. Michel, Lait 81, 787 (2001)

    Article  Google Scholar 

  25. J.A. O’Mahony, M.A.E. Auty, P.L.H. McSweeney, J. Dairy Res. 72, 338 (2005)

    Article  Google Scholar 

  26. C. Von Eiff, G. Peters, C. Heilmann, Lancet Infect. Dis. 2, 677 (2002)

    Article  Google Scholar 

  27. J. Vincent, Lancet 361, 2068 (2003)

    Article  Google Scholar 

  28. D. Barthès-Biesel, J.M. Rallison, J. Fluid Mech. 113, 251 (1981)

    Article  ADS  MATH  Google Scholar 

  29. L. Wiking, L. Bjorck, J.H. Nielsen, Int. Dairy J. 13, 797 (2003)

    Article  Google Scholar 

  30. L. Wiking, J.H. Nielsen, A.K. Bavius, A. Edvardsson, K. Svennersten-Sjaunja, J. Dairy Sci. 89, 1004 (2006)

    Article  Google Scholar 

  31. J.A.C. Flipsen, M.A. van Schaick, R. Dijkman, H.T.W.M. van der Hijden, H.M. Verheij, M.R. Egmond, Chem. Phys. Lipids 97, 181 (1999)

    Article  Google Scholar 

  32. R. Kwok, E.A. Evans, Biophys. J. 35, 637 (1981)

    Article  ADS  Google Scholar 

  33. W.H. Beyer, CRC Standard Mathematical Tables, 28th edn. (CRC Press, Boca Raton FL, 1987)

  34. P.L. Maffettone, M. Minale, J. Non-Newtonian Fluid Mech. 78, 227 (1998)

    Article  MATH  Google Scholar 

  35. G.I. Taylor, Proc. R. Soc. A 138, 41 (1932)

    Article  ADS  Google Scholar 

  36. G.I. Taylor, Proc. R. Soc. A 146, 501 (1934)

    Article  ADS  Google Scholar 

  37. M.T. Landahl, E. Mollo-Christensen, Turbulence and Random Processes in Fluid Mechanics, 2nd edn. (Cambridge University Press, Cambridge, 1992)

  38. P. Walstra, J.T.M. Wouters, T.J. Geurts, Dairy Science and Technology, 2nd edn. (CRC Press/Taylor and Francis, Boca Raton FL, 2005)

  39. V. Cristini, J. Blawzdziewicz, M. Loewenberg, L.R. Collins, J. Fluid Mech. 494, 231 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  40. G.A. Hughmark, Ind. Eng. Chem. Fundam. 16, 307 (1977)

    Article  Google Scholar 

  41. D.A. Edwards, H. Brenner, D.T. Wasan, Interfacial Transport Phenomena and Rheology (Butterworth-Henemann, Boston, 1991)

  42. J.C. Slattery, L.M.C. Sagis, E.S. Oh, Interfacial Transport Phenomena, 2nd edn. (Springer, New York, 2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L.M.C. Sagis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sagis, L., Bijl, E., Antono, L. et al. Protein transfer to membranes upon shape deformation. Eur. Phys. J. Spec. Top. 222, 61–71 (2013). https://doi.org/10.1140/epjst/e2013-01826-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2013-01826-y

Keywords

Navigation