Skip to main content
Log in

Liquid metal flows driven by rotating and traveling magnetic fields

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Alternating magnetic fields provide a comfortable means for non-intrusive flow control in conductive fluids. However, despite a long history of applications in metallurgy and crystal growth, detailed investigation of the practically important transitional and turbulent flow regimes has become possible only in the last dozen years. The present review gives an overview of this topic with focus on recent experimental and numerical studies of the flow driven by rotating and traveling magnetic fields. We discuss the three-dimensional, instantaneous flow structure as well as the resulting average transport properties for a broad range of parameters, including the superposition of both field types. In addition to the ideal case, the effect of a misalignment of the field with respect to the container axis will be considered, too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.G. Page, U.S. Patent, 10480 (1854)

  2. E. Einstein, L. Szilárd, Patentschrift 555 413 (Reichspatentamt, Berlin, 1928)

  3. E.S. Gilfillan, S.M. MacNeille, Rev. Sci. Instrum. 8, 28 (1937)

    Article  ADS  Google Scholar 

  4. N. Tesla, U.S. Patent, 381 968 (1888)

  5. W. Braunbek, Z. Physik 78, 312 (1932)

    Article  ADS  Google Scholar 

  6. J.B. Mullin, K.F. Hulme, J. Electron. Control 4, 170 (1958)

    Article  Google Scholar 

  7. J.P. Birat, J. Chone, Ironmaking Steelmaking 10, 269 (1983)

    Google Scholar 

  8. A.A. Tzavaras, H.D. Brody, J. Metals 36, 31 (1984)

    Google Scholar 

  9. K.-H. Spitzer, M. Dubke, K. Schwerdtfeger, Metallurg. Mat. Trans. B 17, 119 (1986)

    Article  ADS  Google Scholar 

  10. D.T.J. Hurle, R.W. Series, edited by D.T.J. Hurle, Handbook of Crystal Growth, vol. 2a (Elsevier, Amsterdam, 1994), p. 259

  11. Yu. M. Gelfgat, J. Priede, Magnetohydrodynamics 31, 188 (1995)

    MATH  Google Scholar 

  12. K. Yamashita, S. Kobayashi, T. Aoki, Y. Kawata, T. Shiraiwa, in: Semiconductor Fabrication: Technology and Metrology, 7 (American Society for Testing Materials, Philadelphia, 1989)

  13. M. Salk, M. Fiederle, K.W. Benz, A.S. Senchenkov, A.V. Egorov, D.G. Matioukhin, J. Crystal Growth 138, 161 (1994)

    Article  ADS  Google Scholar 

  14. P. Dold, K.W. Benz, Cryst. Res. Technol. 30, 1135 (1995)

    Article  Google Scholar 

  15. N. Ono, G. Trapaga, J. Electrochem. Soc. 144, 764 (1997)

    Article  Google Scholar 

  16. T. Kaiser, K. Benz, Phys. Fluids 10, 1104 (1998)

    Article  ADS  Google Scholar 

  17. P. Rudolph, J. Crystal Growth 310, 1298 (2008)

    Article  ADS  Google Scholar 

  18. P.A. Davidson, Annu. Rev. Fluid Mech. 31, 273 (1999)

    Article  ADS  Google Scholar 

  19. P.A. Davidson, An Introduction to Magnetohydrodynamics (Cambridge Univ. Press, 2001)

  20. I. Grants, G. Gerbeth, J. Crystal Growth 269, 630 (2004)

    Article  ADS  Google Scholar 

  21. N. Ramachandran, K. Mazuruk, M.P. Volz, J. Jpn. Soc. Microgravity Appl. 17, 98 (2000)

    Google Scholar 

  22. H.K. Moffat, J. Fluid Mech. 22, 521 (1965)

    Article  ADS  Google Scholar 

  23. H.K. Moffat, Magnetic Field Generation in Electrically Conducting Fluids (Cambridge Univ. Press, 1978)

  24. L.P. Gorbachev, N.V. Nikitin, A.L. Ustinov, Magnetohydrodynamics 10, 406 (1974)

    Google Scholar 

  25. J. Stiller, K. Koal, J. Turbulence 10, N44 (2009)

    Article  ADS  Google Scholar 

  26. V. Galindo, I. Grants, R. Lantzsch, O. Pätzold, G. Gerbeth, J. Cryst. Growth 303, 258 (2007)

    Article  ADS  Google Scholar 

  27. J. Stiller, K. Koal, K. Fraňa, R. Grundmann, in: Proc. 5th Int. Conf. on CFD in the Process Industries (CSIRO Australia, Melbourne, 2006)

  28. S. Eckert, A. Cramer, G. Gerbeth, edited by S. Molokov, R. Moreau, H.K. Moffatt, Magnetohydrodynamics – Historical Evolution and Trends, 275 (Springer, Dordrecht, 2007)

  29. I. Grants, C. Zhang, S. Eckert, G. Gerbeth, J. Fluid Mech. 616, 135 (2008)

    Article  ADS  MATH  Google Scholar 

  30. P.A. Davidson, J. Fluid Mech. 245, 669 (1992)

    Article  ADS  MATH  Google Scholar 

  31. J. Priede, Yu. M. Gelfgat, Magnetohydrodynamics 32, 249 (1996)

    MathSciNet  MATH  Google Scholar 

  32. I. Grants, G. Gerbeth, J. Fluid Mech. 463, 229 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. I. Grants, G. Gerbeth, Phys. Fluids 15, 2803 (2003)

    Article  ADS  Google Scholar 

  34. K. Koal, J. Stiller, R. Grundmann, Phys. Fluids 19, 088107 (2007)

    Article  ADS  Google Scholar 

  35. A. Cramer, S. Eckert, V. Galindo, G. Gerbeth, B. Willers, W. Witke, J. Mat. Sci. 39, 7285 (2004)

    Article  ADS  Google Scholar 

  36. A. Cramer, J. Pal, G. Gerbeth, Phys. Fluids 19, 118109 (2007)

    Article  ADS  Google Scholar 

  37. A. Cramer, J. Pal, G. Gerbeth, Phys. Fluids 24, 045105 (2012)

    Article  ADS  Google Scholar 

  38. J. Stiller, K. Fraňa, A. Cramer, Phys. Fluids 18, 074105 (2006)

    Article  ADS  Google Scholar 

  39. P.A. Davidson, J.C.R. Hunt, J. Fluid Mech. 185, 67 (1987)

    Article  ADS  MATH  Google Scholar 

  40. Yu. Gelfgat, Yu. Krūminš, M. Abricka, Magnetohydrodynamics 36, 3 (1999)

    Google Scholar 

  41. R. Lantzsch, V. Galindo, I. Grants, C. Zhang, O. Pätzold, G. Gerbeth, M. Stelter, J. Cryst. Growth 305, 249 (2007)

    Article  ADS  Google Scholar 

  42. A. Gelfgat, J. Cryst. Growth 279, 276 (2005)

    Article  ADS  Google Scholar 

  43. A. Cramer, C. Zhang, S. Eckert, Flow Meas. Instrum. 15, 145 (2004)

    Article  Google Scholar 

  44. J. Jeong, V. Hussain, J. Fluid Mech. 285, 69 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. K. Koal, Strömungsbeeinflussung in Flüssigmetallen durch rotierende und wandernde Magnetfelder, Ph.D. thesis, TU Dresden, 2011

  46. A. Cramer, J. Pal, K. Koal, S. Tschisgale, J. Stiller, G. Gerbeth, J. Crystal Growth 321, 142 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Stiller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stiller, J., Koal, K., Nagel, W.E. et al. Liquid metal flows driven by rotating and traveling magnetic fields. Eur. Phys. J. Spec. Top. 220, 111–122 (2013). https://doi.org/10.1140/epjst/e2013-01801-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2013-01801-8

Keywords

Navigation