Advertisement

The European Physical Journal Special Topics

, Volume 220, Issue 1, pp 111–122 | Cite as

Liquid metal flows driven by rotating and traveling magnetic fields

  • J. Stiller
  • K. Koal
  • W. E. Nagel
  • J. Pal
  • A. Cramer
Review

Abstract

Alternating magnetic fields provide a comfortable means for non-intrusive flow control in conductive fluids. However, despite a long history of applications in metallurgy and crystal growth, detailed investigation of the practically important transitional and turbulent flow regimes has become possible only in the last dozen years. The present review gives an overview of this topic with focus on recent experimental and numerical studies of the flow driven by rotating and traveling magnetic fields. We discuss the three-dimensional, instantaneous flow structure as well as the resulting average transport properties for a broad range of parameters, including the superposition of both field types. In addition to the ideal case, the effect of a misalignment of the field with respect to the container axis will be considered, too.

Keywords

Vortex Crystal Growth Turbulent Kinetic Energy Direct Numerical Simulation European Physical Journal Special Topic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.G. Page, U.S. Patent, 10480 (1854)Google Scholar
  2. 2.
    E. Einstein, L. Szilárd, Patentschrift 555 413 (Reichspatentamt, Berlin, 1928)Google Scholar
  3. 3.
    E.S. Gilfillan, S.M. MacNeille, Rev. Sci. Instrum. 8, 28 (1937)ADSCrossRefGoogle Scholar
  4. 4.
    N. Tesla, U.S. Patent, 381 968 (1888)Google Scholar
  5. 5.
    W. Braunbek, Z. Physik 78, 312 (1932)ADSCrossRefGoogle Scholar
  6. 6.
    J.B. Mullin, K.F. Hulme, J. Electron. Control 4, 170 (1958)CrossRefGoogle Scholar
  7. 7.
    J.P. Birat, J. Chone, Ironmaking Steelmaking 10, 269 (1983)Google Scholar
  8. 8.
    A.A. Tzavaras, H.D. Brody, J. Metals 36, 31 (1984)Google Scholar
  9. 9.
    K.-H. Spitzer, M. Dubke, K. Schwerdtfeger, Metallurg. Mat. Trans. B 17, 119 (1986)ADSCrossRefGoogle Scholar
  10. 10.
    D.T.J. Hurle, R.W. Series, edited by D.T.J. Hurle, Handbook of Crystal Growth, vol. 2a (Elsevier, Amsterdam, 1994), p. 259Google Scholar
  11. 11.
    Yu. M. Gelfgat, J. Priede, Magnetohydrodynamics 31, 188 (1995)MATHGoogle Scholar
  12. 12.
    K. Yamashita, S. Kobayashi, T. Aoki, Y. Kawata, T. Shiraiwa, in: Semiconductor Fabrication: Technology and Metrology, 7 (American Society for Testing Materials, Philadelphia, 1989)Google Scholar
  13. 13.
    M. Salk, M. Fiederle, K.W. Benz, A.S. Senchenkov, A.V. Egorov, D.G. Matioukhin, J. Crystal Growth 138, 161 (1994)ADSCrossRefGoogle Scholar
  14. 14.
    P. Dold, K.W. Benz, Cryst. Res. Technol. 30, 1135 (1995)CrossRefGoogle Scholar
  15. 15.
    N. Ono, G. Trapaga, J. Electrochem. Soc. 144, 764 (1997)CrossRefGoogle Scholar
  16. 16.
    T. Kaiser, K. Benz, Phys. Fluids 10, 1104 (1998)ADSCrossRefGoogle Scholar
  17. 17.
    P. Rudolph, J. Crystal Growth 310, 1298 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    P.A. Davidson, Annu. Rev. Fluid Mech. 31, 273 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    P.A. Davidson, An Introduction to Magnetohydrodynamics (Cambridge Univ. Press, 2001)Google Scholar
  20. 20.
    I. Grants, G. Gerbeth, J. Crystal Growth 269, 630 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    N. Ramachandran, K. Mazuruk, M.P. Volz, J. Jpn. Soc. Microgravity Appl. 17, 98 (2000)Google Scholar
  22. 22.
    H.K. Moffat, J. Fluid Mech. 22, 521 (1965)ADSCrossRefGoogle Scholar
  23. 23.
    H.K. Moffat, Magnetic Field Generation in Electrically Conducting Fluids (Cambridge Univ. Press, 1978)Google Scholar
  24. 24.
    L.P. Gorbachev, N.V. Nikitin, A.L. Ustinov, Magnetohydrodynamics 10, 406 (1974)Google Scholar
  25. 25.
    J. Stiller, K. Koal, J. Turbulence 10, N44 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    V. Galindo, I. Grants, R. Lantzsch, O. Pätzold, G. Gerbeth, J. Cryst. Growth 303, 258 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    J. Stiller, K. Koal, K. Fraňa, R. Grundmann, in: Proc. 5th Int. Conf. on CFD in the Process Industries (CSIRO Australia, Melbourne, 2006)Google Scholar
  28. 28.
    S. Eckert, A. Cramer, G. Gerbeth, edited by S. Molokov, R. Moreau, H.K. Moffatt, Magnetohydrodynamics – Historical Evolution and Trends, 275 (Springer, Dordrecht, 2007)Google Scholar
  29. 29.
    I. Grants, C. Zhang, S. Eckert, G. Gerbeth, J. Fluid Mech. 616, 135 (2008)ADSMATHCrossRefGoogle Scholar
  30. 30.
    P.A. Davidson, J. Fluid Mech. 245, 669 (1992)ADSMATHCrossRefGoogle Scholar
  31. 31.
    J. Priede, Yu. M. Gelfgat, Magnetohydrodynamics 32, 249 (1996)MathSciNetMATHGoogle Scholar
  32. 32.
    I. Grants, G. Gerbeth, J. Fluid Mech. 463, 229 (2002)MathSciNetADSMATHCrossRefGoogle Scholar
  33. 33.
    I. Grants, G. Gerbeth, Phys. Fluids 15, 2803 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    K. Koal, J. Stiller, R. Grundmann, Phys. Fluids 19, 088107 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    A. Cramer, S. Eckert, V. Galindo, G. Gerbeth, B. Willers, W. Witke, J. Mat. Sci. 39, 7285 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    A. Cramer, J. Pal, G. Gerbeth, Phys. Fluids 19, 118109 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    A. Cramer, J. Pal, G. Gerbeth, Phys. Fluids 24, 045105 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    J. Stiller, K. Fraňa, A. Cramer, Phys. Fluids 18, 074105 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    P.A. Davidson, J.C.R. Hunt, J. Fluid Mech. 185, 67 (1987)ADSMATHCrossRefGoogle Scholar
  40. 40.
    Yu. Gelfgat, Yu. Krūminš, M. Abricka, Magnetohydrodynamics 36, 3 (1999)Google Scholar
  41. 41.
    R. Lantzsch, V. Galindo, I. Grants, C. Zhang, O. Pätzold, G. Gerbeth, M. Stelter, J. Cryst. Growth 305, 249 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    A. Gelfgat, J. Cryst. Growth 279, 276 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    A. Cramer, C. Zhang, S. Eckert, Flow Meas. Instrum. 15, 145 (2004)CrossRefGoogle Scholar
  44. 44.
    J. Jeong, V. Hussain, J. Fluid Mech. 285, 69 (1995)MathSciNetADSMATHCrossRefGoogle Scholar
  45. 45.
    K. Koal, Strömungsbeeinflussung in Flüssigmetallen durch rotierende und wandernde Magnetfelder, Ph.D. thesis, TU Dresden, 2011Google Scholar
  46. 46.
    A. Cramer, J. Pal, K. Koal, S. Tschisgale, J. Stiller, G. Gerbeth, J. Crystal Growth 321, 142 (2011)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  • J. Stiller
    • 1
  • K. Koal
    • 1
    • 2
  • W. E. Nagel
    • 3
  • J. Pal
    • 4
  • A. Cramer
    • 4
  1. 1.Institut für StrömungsmechanikTU DresdenDresdenGermany
  2. 2.INNIUS GTD GmbHDresdenGermany
  3. 3.Zentrum für Informationsdienste und HochleistungsrechnenTU DresdenDresdenGermany
  4. 4.Institut für FluiddynamikHelmholtz-Zentrum Dresden-RossendorfDresdenGermany

Personalised recommendations