Advertisement

The European Physical Journal Special Topics

, Volume 216, Issue 1, pp 117–125 | Cite as

Peculiarities of stochastic motion in antiferromagnetic nanoparticles

  • H. Gomonay
  • V. Loktev
Regular Article

Abstract

Antiferromagnetic (AFM) materials are widely used in spintronic devices as passive elements (for stabilization of ferromagnetic layers) and as active elements (for information coding). In both cases the switching between different AFM states, to a great extent depends on the environmental noise. In the present paper we derive stochastic Langevian equations for an AFM vector and a corresponding Fokker-Plank equation for a distribution function in the phase space of generalised coordinate and momentum. Thermal noise is modelled by a random delta-correlated magnetic field that interacts with the dynamic magnetisation of AFM particle. We scrupulously analyse a particular case of a collinear compensated AFM in the presence of spin-polarised current. The energy distribution function is found for normal modes in the vicinity of two equilibrium states (static and stationary) in sub- and super-critical regimes. It is shown that the noise-induced dynamics of AFM vector has some pecuilarities compared to the dynamics of magnetisation vector in ferromagnets.

Keywords

European Physical Journal Special Topic Thermal Noise Stochastic Resonance Multiplicative Noise Energy Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Bandiera, R.C. Sousa, M. Marins de Castro, C. Ducruet, C. Portemont, S. Auffret, L. Vila, I.L. Prejbeanu, B. Rodmacq, B. Dieny, Appl. Phys. Lett. 99, 202507 (2011)CrossRefADSGoogle Scholar
  2. 2.
    I.L. Prejbeanu, M. Kerekes, R.C. Sousa, H. Sibuet, O. Redon, B. Dieny, J.P. Nozires, J. Phys.: Cond. Matt. 19, 165218 (2007)ADSGoogle Scholar
  3. 3.
    D. Herranz, R. Guerrero, R. Villar, F.G. Aliev, A.C. Swaving, R.A. Duine, C. van Haesendonck, I. Vavra, Phys. Rev. B 79, 134423 (2009)CrossRefADSGoogle Scholar
  4. 4.
    D. Gusakova, M. Quinsat, J.F. Sierra, U. Ebels, B. Dieny, L.D. Buda-Prejbeanu, M.-C. Cyrille, V. Tiberkevich, A.N. Slavin, Appl. Phys. Lett. 99, 052501 (2011)CrossRefADSGoogle Scholar
  5. 5.
    I.N. Krivorotov, N.C. Emley, A.G.F. Garcia, J.C. Sankey, S.I. Kiselev, D.C. Ralph, R.A. Buhrman, Phys. Rev. Lett. 93, 166603 (2004)CrossRefADSGoogle Scholar
  6. 6.
    V. Tiberkevich, A. Slavin, J.-V. Kim, Appl. Phys. Lett. 91, 192506 (2007)CrossRefADSGoogle Scholar
  7. 7.
    O. Prokopenko, G. Melkov, E. Bankowski, T. Meitzler, V. Tiberkevich, A. Slavin, Appl. Phys. Lett. 99, 032507 (2011)CrossRefADSGoogle Scholar
  8. 8.
    W.F. Brown, Phys. Rev. 130, 1677 (1963)CrossRefADSGoogle Scholar
  9. 9.
    W.F. Brown, IEEE Trans. Magn. 15, 1196 (1979)CrossRefADSGoogle Scholar
  10. 10.
    D.A. Garanin, Phys. Rev. B 55, 3050 (1997)CrossRefADSGoogle Scholar
  11. 11.
    Y. Gaididei, T. Kamppeter, F.G. Mertens, A. Bishop, Phys. Rev. B 59, 7010 (1999)CrossRefADSGoogle Scholar
  12. 12.
    U. Atxitia, O. Chubykalo-Fesenko, R.W. Chantrell, U. Nowak, A. Rebei, Phys. Rev. Lett. 102, 057203 (2009)CrossRefADSGoogle Scholar
  13. 13.
    K. Miyazaki, K. Seki, J. Chem. Phys. 108, 7052 (1998)CrossRefADSGoogle Scholar
  14. 14.
    Z. Li, S. Zhang, Phys. Rev. B 69, 134416 (2004)CrossRefADSGoogle Scholar
  15. 15.
    D.M. Apalkov, P.B. Visscher, Phys. Rev. B 72, 180405 (2005)CrossRefADSGoogle Scholar
  16. 16.
    B. Ouari, Yu.P. Kalmykov, Phys. Rev. B 83 064406 (2011)CrossRefADSGoogle Scholar
  17. 17.
    Yu.L. Raikher, V.I. Stepanov, J. Exp. Theor. Phys. 107, 435 (2008) (in Russian)CrossRefADSGoogle Scholar
  18. 18.
    B. Ouari, S. Aktaou, Yu.P. Kalmykov, Phys. Rev. B 81 (2010)Google Scholar
  19. 19.
    S.K. Mishra, The European Phys. J. B 78, 65 (2010)CrossRefADSGoogle Scholar
  20. 20.
    A.V. Kimel, B.A. Ivanov, R.V. Pisarev, P.A. Usachev, A. Kirilyuk, Th. Rasing, Nat. Phys. (London) 5, 727 (2009)Google Scholar
  21. 21.
    S. Urazhdin, N. Anthony, Phys. Rev. Lett. 99, 046602 (2007)CrossRefADSGoogle Scholar
  22. 22.
    J. Bass, A. Sharma, Z. Wei, M. Tsoi, J. Magnetics (Korean Magnetics Society) 13, 1 (2008)Google Scholar
  23. 23.
    X.L. Tang, H.Wu Zhang, H. Su, Y.L. Jing, Z. Yong Zhong, Phys. Rev. B 81, 052401 (2010)CrossRefADSGoogle Scholar
  24. 24.
    H.V. Gomonay, V.M. Loktev, Phys. Rev. B 81, 144427 (2010)CrossRefADSGoogle Scholar
  25. 25.
    B.G. Park, J. Wunderlich, X. Marti, V. Holy, Y. Kurosaki, M. Yamada, H. Yamamoto, A. Nishide, J. Hayakawa, H. Takahashi, A.B. Shick, T. Jungwirth, Nat. Mater. (London) 10, 347 (2011)CrossRefADSGoogle Scholar
  26. 26.
    A.F. Andreev, V.I. Marchenko, Physics-Uspekhi 23, 21 (1980) (in Russian)CrossRefGoogle Scholar
  27. 27.
    I.V. Bar’yakhtar, B.A. Ivanov, Sov. J. Low Temp. Phys. 5, 361 (1979) (in Russian)Google Scholar
  28. 28.
    W.T. Coffey, Yu.P. Kalmykov, J.T. Waldron, The Langevin Equation. With Application in Physics, Chemistry and Electrical Engineering (World Scientific, Singapore 1996), p. 428Google Scholar
  29. 29.
    R.F.L. Evans, D. Hinzke, U. Atxitia, U. Nowak, R.W. Chantrell, O. Chubykalo-Fesenko, Phys. Rev. B 85, 014433 (2012)CrossRefADSGoogle Scholar
  30. 30.
    E.A. Turov, A.V. Kolchanov, V.V. Men’shenin, I.F. Mirsaev, V.V. Nikolaev, Symmetry and Physical Properties of Antiferromagnets (Fizmatlit, Moscow 2001), p. 560 (in Russian)Google Scholar
  31. 31.
    B.I. Lev, A.D. Kiselev, Phys. Rev. E 82, 031101 (2010)CrossRefADSGoogle Scholar
  32. 32.
    J.L. García-Palacios, F.J. Lázaro, Phys. Rev. B 58, 14937 (1998)CrossRefADSGoogle Scholar
  33. 33.
    J.M. Horowitz, S. Vaikuntanathan, Phys. Rev. E 82, 061120 (2010)CrossRefADSGoogle Scholar
  34. 34.
    H. Hasegawa, Phys. Rev. E 84, 051124 (2011)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.National Technical University of Ukraine “KPI”KyivUkraine
  2. 2.Bogolyubov Institute for Theoretical Physics National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations