The European Physical Journal Special Topics

, Volume 213, Issue 1, pp 53–68 | Cite as

Neutron spectroscopy of molecular nanomagnets



This short overview gives an account on the use of neutron spectroscopy for the examination of molecular nanomagnets, systems constructed by crystalline arrangement of finite size clusters (usually with regular form) of interacting moment carrying atoms – magnetic molecules. Opposed to extended magnetic systems with bands of collective excitations such as spin-waves the molecular nanomagnets are entities with local properties, each magnetic molecule possessing a finite number of energy levels that can be solved exactly for small enough systems. In essence, the number of states remains finite despite growing rapidly with increasing number of magnetic centers and the value of the spin quantum number. Increasingly large numbers of states and more complex exchange networks lead to the need for approximative treatments, the validity of which can be checked with neutron spectroscopy. Molecular nanomagnets provide interesting examples of physics and magnetochemistry, illustrated here with a few examples that highlight the power of neutron spectroscopy for precise investigation of the energy level structure and spatial configuration of the magnetic exchange parameters.


European Physical Journal Special Topic Rotational Band Spectral Weight Inelastic Neutron Scatter Neutron Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.U.Güdel, A.Furrer, Mol. Phys. 33, 1335 (1977)ADSCrossRefGoogle Scholar
  2. 2.
    R.Sessoli, D.Gatteschi, A.Caneshi, M.A.Novak, Nature 365, 141 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    D.Gatteschi, R.Sessoli, J.Villain, Molecular nanomagnets, of Mesoscopic physics and nanotechnology (Oxford University Press, 2006)Google Scholar
  4. 4.
    R.Sessoli, Angewandte Chem. Int. Ed. 51, 43 (2012)CrossRefGoogle Scholar
  5. 5.
    M.Evangelisti, E.K.Brechin, Dalton Trans. 39, 4672 (2010)CrossRefGoogle Scholar
  6. 6.
    M.N.Leuenberger, D.Loss, Nature 410, 789 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    L.Bogani, W.Wernsdorfer, Nature Mater. 7, 179 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    M.Mannini, F.Pineider, P.Sainctavit, C.Danieli, E.Otero, C.Sciancalepore, A.M.Talarico, M.-A.Arrio, A.Cornia, D.Gatteschi, R.Sessoli, Nature Mater. 7, 179 (2008)CrossRefGoogle Scholar
  9. 9.
    A.S.Zyazin, J.W.G.van den Berg, E.A.Osorio, H.S.J.van der Zant, N.P.Konstantinidis, M.Leijnse, M.R.Wegewijs, F.May, W.Hofstetter, C.Danieli, A.Cornia., Nano Lett. 10, 3307 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    M.Carmen Giménez-López, F.Moro, A.La Torre, C.J.Gómez-García, P.D.Brown, J.van Slageren, A.N.Khlobystov, Nat. Commun. 2 (2011)Google Scholar
  11. 11.
    R.Basler, C.Boskovic, G.Chaboussant, H.U.Gudel, M.Murrie, S.T.Ochsenbein, A.Sieber, Chem. Phys. Chem. 4 (2003)Google Scholar
  12. 12.
    A.Furrer, J.Mesot, T.Strässle, Neutron Scattering in Condensed Matter Physics (World Scientific, 2009)Google Scholar
  13. 13.
    O.Waldmann, Phys. Rev. B 68, 17406 (2003)CrossRefGoogle Scholar
  14. 14.
    R.Caciuffo, T.Guidi, G.Amoretti, S.Carretta, E.Liviotti, P.Santini, C.Mondelli, G.Timco, C.A.Muryn, R.E.P.Winpenny, Phys. Rev. B 71, 174407 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    A.Müller, J.Döring, Ang. Chem. Int. Ed. Engl. 27, 1721 (1988)CrossRefGoogle Scholar
  16. 16.
    A.L.Barra, D.Gatteschi, L.Pardi, A.Mueller, J.Doering, J. Amer. Chem. Soc. 114, 8509 (1992)CrossRefGoogle Scholar
  17. 17.
    D.Gatteschi, L.Pardi, A.L.Barra, A.Müller, J.Döring, Nature 354, 463 (1991)ADSCrossRefGoogle Scholar
  18. 18.
    I.Chiorescu, W.Wernsdorfer, A.Müller, H.Bögge, B.Barbara, Phys. Rev. Lett. 84, 3454 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    V.V.Dobrovitski, M.I.Katsnelson, B.N.Harmon, Phys. Rev. Lett. 84, 3458 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    G.Chaboussant, S.T.Ochsenbein, A.Sieber, H.-U.Güdel, H.Mutka, A.Müller, B.Barbara, EPL 66, 423 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    S.Carretta, P.Santini, G.Amoretti, T.Guidi, J.R.D.Copley, Y.Qiu, R.Caciuffo, G.Timco, R.E.P.Winpenny, Phys. Rev. Lett. 98, 167401 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    N.Hoshino, M.Nakano, H.Nojiri, W.Wernsdorfer, H.Oshio, J. Amer. Chem. Soc. 131, 15100 (2009) PMID: 19803515CrossRefGoogle Scholar
  23. 23.
    Y.Furukawa, K.Kiuchi, K.Kumagai, Y.Ajiro, Y.Narumi, M.Iwaki, K.Kindo, A.Bianchi, S.Carretta, P.Santini, F.Borsa, G.A.Timco, R.E.P.Winpenny, Phys. Rev. B 79, 134416 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    O.Cador, D.Gatteschi, R.Sessoli, F.K.Larsen, J.Overgaard, A.-L.Barra, S.J.Teat, G.A.Timco, R.E.P.Winpenny, Angew. Chem. Int. Ed. 43, 5196 (2004)CrossRefGoogle Scholar
  25. 25.
    M.L.Baker, O.Waldmann, S.Piligkos, R.Bircher, O.Cador, S.Carretta, D.Collison, F.Fernandez-Alonso, E.J.L.McInnes, H.Mutka, A.Podlesnyak, F.Tuna, S.Ochsenbein, R.Sessoli, A.Sieber, G.A.Timco, H.Weihe, H.U.Güdel, R.E.P.Winpenny, Phys. Rev. B 86, 064405 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    M.L.Baker, G.A.Timco, S.Piligkos, J.Mathieson, H.Mutka, F.Tuna, P.Kozłowski, M.Antkowiak, T.Guidi, T.Gupta, H.Rath, R.J.Woolfson, G.Kamieniarz, R.G.Pritchard, H.Weihe, L.Cronin, G.Rajaraman, D.Collison, E.J.L.McInnes, R.E.P.Winpenny, Proc. Nat. Acad. Sci. (2012) (in press)Google Scholar
  27. 27.
    K.Bärwinkel, P.Hage, H.-J.Schmidt, J.Schnack, Phys. Rev. B 68, 054422 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    B.Normand, X.Wang, X.Zotos, D.Loss, Phys. Rev. B 63, 184409 (2001)ADSCrossRefGoogle Scholar
  29. 29.
    K.Bärwinkel, H.-J.Schmidt, J.Schnack, J. Magn. Magn. Mater. 212, 240 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    A.Chiolero, D.Loss, Phys. Rev. Lett. 80, 169 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    K.L.Taft, C.D.Delfs, G.C.Papaefthymiou, S.Foner, D.Gatteschi, S.J.Lippard, J. Amer. Chem. Soc. 116, 823 (1994)CrossRefGoogle Scholar
  32. 32.
    A.Honecker, F.Meier, D.Loss, B.Normand, Eur. Phys. J. B. 27, 487 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    V.O.Garlea, S.E.Nagler, J.L.Zarestky, C.Stassis, D.Vaknin, P.Kögerler, D.F.McMorrow, C.Niedermayer, D.A.Tennant, B.Lake, Y.Qiu, M.Exler, J.Schnack, M.Luban, Phys. Rev. B 73, 024414 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    S.Carretta, J.van Slageren, T.Guidi, E.Liviotti, C.Mondelli, D.Rovai, A.Cornia, A.L.Dearden, F.Carsughi, M.Affronte, C.D.Frost, R.E.P.Winpenny, D.Gatteschi, G.Amoretti, R.Caciuffo, Phys. Rev. B 67, 094405 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    E.Liviotti, S.Carretta, G.Amoretti, J. Chem. Phys. 117, 3361 (2002)ADSCrossRefGoogle Scholar
  36. 36.
    G.Amoretti, R.Caciuffo, S.Carretta, T.Guidi, N.Magnani, P.Santini, Inorg. Chim. Acta. 361, 3771 (2008)CrossRefGoogle Scholar
  37. 37.
    O.Waldmann, T.Guidi, S.Carretta, C.Mondelli, A.L.Dearden, Phys. Rev. Lett. 91, 237202 (2003)ADSCrossRefGoogle Scholar
  38. 38.
    A.Bianchi, S.Carretta, P.Santini, G.Amoretti, T.Guidi, Y.Qiu, J.R.D.Copley, G.Timco, C.Muryn, R.E.P.Winpenny, Phys. Rev. B 79, 1444222 (2009)CrossRefGoogle Scholar
  39. 39.
    Y.Furukawa, K.Kiuchi, K.Kumagai, Y.Ajiro, Y.Narumi, M.Iwaki, K.Kindo, A.Bianchi, S.Carretta, G.A.Timco, R.E.P.Winpenny, Phys. Rev. B 78, 092402 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    O.Waldmann, J.Schülein, R.Koch, P.Müller, I.Bernt, R.W.Saalfrank, H.P.Andres, H.U.Güdel, P.Allenspach, Inorg. Chem. 38, 5879 (1999)CrossRefGoogle Scholar
  41. 41.
    O.Waldmann, C.Dobe, H.Mutka, A.Furrer, H.U.Güdel, Phys. Rev. Lett. 95, 057202 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    O.Waldmann, C.Dobe, H.U.Güdel, H.Mutka, Phys. Rev. B 74, 054429 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    J.Dreiser, O.Waldmann, C.Dobe, G.Carver, S.T.Ochsenbein, A.Sieber, H.U.Güdel, J.van Duijn, J.Taylor, A.Podlesnyak, Phys. Rev. B. 81, 024408 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    P.Santini, S.Carretta, G.Amoretti, T.Guidi, R.Caciuffo, A.Caneschi, D.Rovai, Y.Qiu, J.R.D.Copley, Phys. Rev. B 71, 184405 (2005)ADSCrossRefGoogle Scholar
  45. 45.
    O.Waldmann, T.C.Stamatatos, G.Christou, H.U.Güdel, I.Sheikin, H.Mutka, Phys. Rev. Lett. 102, 157202 (2009)ADSCrossRefGoogle Scholar
  46. 46.
    T.C.Stamatatos, A.G.Christou, S.Mukherjee, K.M.Poole, C.Lampropoulos, K.A.Abboud, T.A.Brien, G.Christou, Inorg. Chem. 47, 9021 (2008)CrossRefGoogle Scholar
  47. 47.
    N.P.Konstantinidis, A.Sundt, J.Nehrkorn, A.Machens, O.Waldmann, J. Phys.: Conf. Ser. 303, 012003 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    M.Urdampilleta, S.Klyatskaya, J.-P.Cleuziou, M.Ruben, W.Wernsdorfer, Nat. Mat. 10, 502 (2011)CrossRefGoogle Scholar
  49. 49.
    M.Mannini, F.Pineider, P.Sainctavit, C.Danieli, E.Otero, C.Sciancalepore, A.M.Talarico, M.-A.Arrio, A.Cornia, D.Gatteschi, R.Sessoli, Nat. Mat. 8, 194 (2009)CrossRefGoogle Scholar
  50. 50.
    I.Mirebeau, M.Hennion, H.Casalta, H.Andres, H.U.Güdel, A.V.Irodova, A.Caneschi, Phys. Rev. Lett. 83, 628 (1999)ADSCrossRefGoogle Scholar
  51. 51.
    A.Sieber, R.Bircher, O.Waldmann, G.Carver, G.Chaboussant, H.Mutka, H.-U.Güdel, Angew. Chem. Int. Ed. 44, 4239 (2005)CrossRefGoogle Scholar
  52. 52.
    O.Waldmann, G.Carver, C.Dobe, D.Biner, A.Sieber, H.U.Güdel, H.Mutka, J.Ollivier, N.E.Chakov, Appl. Phys. Lett. 88, 042507 (2006)ADSCrossRefGoogle Scholar
  53. 53.
    J.Ollivier, H.Mutka, J. Phys Soc. Japan 80, SB003 (2011)CrossRefGoogle Scholar
  54. 54.
    M.L.Baker, T.Guidi, S.Carretta, J.Ollivier, H.Mutka, H.-U.Güdel, G.A.Timco, E.J.L.McInnes, G.Amoretti, R.E.P.Winpenny, P.Santini, Nature Phys. (2012), advanced on-line publication Sep. 30 (2012)Google Scholar

Copyright information

© EDP Sciences and Springer 2012

Authors and Affiliations

  1. 1.Institute for Materials Research, Tohoku UniversitySendaiJapan
  2. 2.Institut Laue-LangevinGrenoble Cedex 9France

Personalised recommendations