The European Physical Journal Special Topics

, Volume 212, Issue 1, pp 77–97 | Cite as

Combinatorial Laplacian and entropy of simplicial complexes associated with complex networks

Regular Article


Simplicial complexes represent useful and accurate models of complex networks and complex systems in general. We explore the properties of spectra of combinatorial Laplacian operator of simplicial complexes and show its relationship with connectivity properties of the Q-vector and with connectivities of cliques in the simplicial clique complex. We demonstrate the need for higher order analysis in complex networks and compare the results with ordinary graph spectra. Methods and results are obtained using social network of the Zachary karate club.


Complex Network European Physical Journal Special Topic Simplicial Complex Maximal Clique Club Member 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002)ADSMATHCrossRefGoogle Scholar
  2. 2.
    S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Phys. Rep. 424, 175 (2006)MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    S.N. Dorogovtsev, J.F.F. Mendes, Evolution of Networks: From Biological Nets to the Internet and WWW (Oxford University Press, Oxford, 2003)Google Scholar
  4. 4.
    F. Harary, Graph Theory (Perseus, Cambridge, MA, 1995)Google Scholar
  5. 5.
    R.H. Atkin, Mathematical structure in human affairs (Heinemann, London, 1974)Google Scholar
  6. 6.
    R.W. Sharpe, Differential Geometry: Cartan’s genralization of Klein’s Erlangen Program (Springer-Verlag, New York, 1997)Google Scholar
  7. 7.
    E. Gawlik, P. Mullen, D. Pavlov, J.E. Marsden, M. Desbrun, Physica D 240, 1724 (2011)MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (W.H. Freeman, San Francisco, 1973)Google Scholar
  9. 9.
    W.W. Zachary, J. Anthropol. Res. 33, 452 (1977)Google Scholar
  10. 10.
    J.R. Munkres, Elements of Algebraic Topology (Addison-Wesley Publishing, California, 1984)Google Scholar
  11. 11.
    S. Fortunato, Phys. Rep. 486, 75 (2010)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    G. Palla, I. Derényi, I. Farkas, T. Vicsek, Nature 435, 814 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    D. Kozlov, Combinatorial Algebraic Topology (Algorithms and Computation in Mathematics, Springer-Verlag, Berlin Heidelberg, 2008)Google Scholar
  14. 14.
    S. Maletić, M. Rajković, D. Vasiljević, Lect. Notes Computer Sci., Springer 5102, 568 (2008)CrossRefGoogle Scholar
  15. 15.
    S. Maletić, D. Horak, M. Rajković, Lect. Notes Computer Sci., Springer 5102, 508 (2008)Google Scholar
  16. 16.
    D. Horak, S. Maletić, M. Rajković, J. Stat. Mech. 03, P03034 (2009)CrossRefGoogle Scholar
  17. 17.
    A.M. Duval, V. Reiner, Trans. Amer. Math. Soc. 354, 4313 (2002)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    T.E. Goldberg, Combinatorial Laplacians of Simplicial Complexes (Annandale-on-Hudson, New York, 2002)Google Scholar
  19. 19.
    B. Mohar, Graph Theory, Combin., Appl. 2, 871 (1991)MathSciNetGoogle Scholar
  20. 20.
    F.M. Atay, T. Biyikoğlu, Phys. Rev. E 72, 016217 (2005)MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    A. Arenas, A. Díaz-Guilera, C.J. Pérez-Vicente, Phys. Rev. Lett. 96, 114102 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    M.E.J. Newman, Phys. Rev. E 74, 036104 (2006)MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    A. Muhammad, M. Egerstedt, Proceedings of the 17th International Symposium on Mathematical Theory and Systems, Kyoto, Japan (2006), p. 1024Google Scholar
  24. 24.
    D. Horak, J. Jost [arXiv: 1105.2712]Google Scholar
  25. 25.
    D. Horak [arXiv: 1111.1836]Google Scholar
  26. 26.
    G. Bianconi, Europhys. Lett. 81, 28005 (2008)MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    G. Bianconi, A.C.C. Coolen, C.J. Perez Vicente, Phys. Rev. E 78, 016114 (2008)MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    G. Bianconi, Phys. Rev. E 79, 036114 (2009)MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    S.L. Braunstein, S. Ghosh, S. Severini, Ann. Combin. 10, 291 (2006)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    F.Passerini, S.Severini [arXiv:0812.2597v1]Google Scholar
  31. 31.
    R.Atkin, Int. J. Man-Machine Stud. 4, 341 (1972)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    J.H.Johnson, Environ. Plann. B 8, 73 (1981)CrossRefGoogle Scholar
  33. 33.
    W.V.D.Hodge, The Theory and applications of harmonic integrals (Cambridge at the University Press, 1952)Google Scholar
  34. 34.
    J.Friedman, Proc. 28th Annual ACM Symposium, Theory and Computations (1996), p. 386Google Scholar
  35. 35.
    S.H.Friedberg, A.J.Insel, L.E.Spence, Linear Algebra (Prentice-Hall, Englewood Cliffs, NJ, 1997)Google Scholar
  36. 36.
    F.R.K.Chung, Spectral Graph Theory, CBMS Regional Conference Series in Mathematics, No. 92 (American Mathematical Society, 1996)Google Scholar
  37. 37.
    A.Banerjee, J.Jost, Discr. Appl. Math. 157, 2425 (2009)MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    C.Bron, J.Kerbosch, Comm. ACM 16, 575 (1973)MATHCrossRefGoogle Scholar
  39. 39.
    T.S.Evans, J. Stat. Mech. P12037 (2010)Google Scholar

Copyright information

© EDP Sciences and Springer 2012

Authors and Affiliations

  1. 1.Institute of Nuclear Sciences VinčaUniversity of BelgradeBelgradeSerbia

Personalised recommendations