The European Physical Journal Special Topics

, Volume 208, Issue 1, pp 259–274 | Cite as

Quantitative anomalous small-angle X-ray scattering — The determination of chemical concentrations in nano-scaled phases

  • G. Goerigk
  • K. Huber
  • N. Mattern
  • D. L. Williamson
Open Access
Review

Abstract

In the last years Anomalous Small-Angle X-ray Scattering became a precise quantitative method resolving scattering contributions two or three orders of magnitude smaller compared to the overall small-angle scattering, which are related to the so-called pure-resonant scattering contribution. Additionally to the structural information precise quantitative information about the different constituents of multi-component systems like the fraction of a chemical component implemented into the materials nanostructures are obtained from these scattering contributions. The application of the Gauss elimination algorithm to the vector equation established by ASAXS measurements at three X-ray energies is demonstrated for three examples from chemistry and solid state physics. All examples deal with the quantitative analysis of the Resonant Invariant (RI-analysis). From the integrals of the pure-resonant scattering contribution the chemical concentrations in nano-scaled phases are determined. In one example the correlated analysis of the Resonant Invariant and the Non-resonant Invariant (NI-analysis) is employed.

Keywords

Metallic Glass European Physical Journal Special Topic Spinodal Decomposition Yttrium Atom SAXS Curve 

References

  1. 1.
    J.P. Simon, J. Appl. Cryst. 40, 1 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    F.B. Rasmussen, A.M. Molenbrock, B.S. Clausen, R. Feidenhans’l, J. Catalysis 190, 205 (2000)CrossRefGoogle Scholar
  3. 3.
    A. Bota, Z. Varga, G. Goerigk, J. Phys. Chem. C 112, 4427 (2008)CrossRefGoogle Scholar
  4. 4.
    D. Tatchev, A. Hoell, M. Eichelbaum, K. Rademann, Phys. Rev. Lett.106, 085702-1 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    G. Goerigk, N. Mattern, Acta Materialia 57, 3652 (2009)CrossRefGoogle Scholar
  6. 6.
    M. Patel, S. Rosenfeldt, M. Ballauff, N. Dingenouts, D. Pontoni, T. Narayanan, Phys. Chem. Chem. Phys. 6, 2962 (2004)CrossRefGoogle Scholar
  7. 7.
    H.-G. Haubold, K. Gruenhagen, M. Wagener, H. Jungbluth, H. Heer, A. Pfeil, H. Rongen, G. Brandenburg, R. Moeller, J. Matzerath, P. Hiller, H. Halling, Rev. Sci. Instrum. 60, 1943 (1989)ADSCrossRefGoogle Scholar
  8. 8.
    G. Goerigk ‘Electronic and Computer Upgrade at ASAXS Beamline JUSIFA’, HASYLAB Annual Report (2006), p. 77Google Scholar
  9. 9.
    H.B. Stuhrmann, Adv. Polymer Science 67, 123 (1985)CrossRefGoogle Scholar
  10. 10.
    G. Goerigk, N. Mattern, J. Phys. Conf. Ser. 247, 012022 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    G. Goerigk, R. Schweins, K. Huber, M. Ballauff, Europhys. Lett. 66 331 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    G. Goerigk, D.L. Williamson, J. Appl. Phys. 99, 084309 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    G. Goerigk, K. Huber, R. Schweins, J. Chem. Phys. 127, 154908 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    J. Westlake, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations. (New York: J. Wiley and Sons, 1968)Google Scholar
  15. 15.
    J.P. Simon, O. Lyon, D. de Fontaine, J. Appl. Cryst. 18, 230 (1985)CrossRefGoogle Scholar
  16. 16.
    I.J. Michaeli, Polym. Sci. 48, 291 (1960)ADSCrossRefGoogle Scholar
  17. 17.
    K. Huber, J. Phys. Chem. 97, 9825 (1993)CrossRefGoogle Scholar
  18. 18.
    D.T. Cromer, D. Liberman, J. Chem. Phys. 53, 1891 (1970)ADSCrossRefGoogle Scholar
  19. 19.
    D.T. Cromer, D. Liberman, Acta Cryst. A37, 267 (1981)Google Scholar
  20. 20.
    R. Schweins, P. Lindner, K. Huber, Macromolecules 36, 9564 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    A.V. Dobrynin, M. Rubinstein, S.P. Obukhov, Macromolecules 29, 2974 (1991)ADSCrossRefGoogle Scholar
  22. 22.
    U. Micka, Ch. Holm, K. Kremer, Langmuir 15, 4033 (1999)CrossRefGoogle Scholar
  23. 23.
    P. Chodanowski, S. Stoll, J. Chem. Phys. 111, 6069 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    H.J. Limbach, Ch. Holm, J. Phys. Chem. B 107, 8041 (2003)CrossRefGoogle Scholar
  25. 25.
    O. Glatter, O. Kratky, Small-Angle X-ray Scattering (Academic Press, London, 1982)Google Scholar
  26. 26.
    D.L. Williamson, Mater. Res. Soc. Symp. Proc. 377, 251 (1995)CrossRefGoogle Scholar
  27. 27.
    G. Goerigk, D.L. Williamson, Solid State Commun. 108, 419 (1998)ADSCrossRefGoogle Scholar
  28. 28.
    G. Goerigk, D.L. Williamson, J. Non-Cryst. Solids 281, 181 (2001)ADSCrossRefGoogle Scholar
  29. 29.
    G. Goerigk, D.L. Williamson, J. Appl. Phys. 90, 5808 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    E.C. Molenbroek, A.H. Mahan, A. Gallagher, J. Appl. Phys. 82, 1909 (1997)ADSCrossRefGoogle Scholar
  31. 31.
    B.P. Nelson, Y. Xu, D.L. Williamson, B. von Roedern, A. Mason, S. Heck, A.H. Mahan, S.E. Schmitt, A.C. Gallagher, J. Webb, R. Reedy, Mat. Res. Soc. Symp. Proc. 507, 447 (1998)CrossRefGoogle Scholar
  32. 32.
    B.P. Nelson, Y. Xu, D.L. Williamson, D. Han, R. Braunstein, M. Boshta, and B. Alavi, Thin Solid films 430, 104 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    Y. Xu, B.P. Nelson, D.L. Williamson, L.M. Gedvilas, and R.C. Reedy, Mat. Res. Soc. Symp. Proc. 762, A 10.2 (2003)Google Scholar
  34. 34.
    Y. Xu, B.P. Nelson, L.M. Gedvilas, R.C. Reedy, Thin Solid Films 430, 197 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    G. Beaucage, J. Appl. Cryst. 28, 717 (1995)CrossRefGoogle Scholar
  36. 36.
    N. Mattern, M. Zinkevich, W Löser, G Behr, J.J. Acker, Phase Equil. Diff. 29 141 (2008)CrossRefGoogle Scholar
  37. 37.
    N. Mattern, U. Kühn, A. Gebert, T. Gemming, M. Zinkevich, H. Wendrock, L. Schultz, Scripta Materialia 53, 271 (2005)CrossRefGoogle Scholar
  38. 38.
    N. Mattern, T. Gemming, G. Goerigk, J. Eckert, Scripta Mater. 57, 29 (2007)CrossRefGoogle Scholar
  39. 39.
    A. Shariq, N. Mattern, Ultramicroscopy 111, 1370 (2011)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag 2012

Authors and Affiliations

  • G. Goerigk
    • 1
  • K. Huber
    • 2
  • N. Mattern
    • 3
  • D. L. Williamson
    • 4
  1. 1.Institute of Soft Matter and Functional MaterialsHelmholtz-ZentrumBerlinGermany
  2. 2.Fakultät für Naturwissenschaften, Department ChemieUniversität PaderbornPaderbornGermany
  3. 3.Institute for Complex MaterialsLeibniz-Institute IFWDresdenGermany
  4. 4.Colorado School of MinesColoradoUSA

Personalised recommendations