Volume dilatation in a polycarbonate blend at varying strain rates

  • S. Hiermaier
  • F. Huberth
Regular Article


Impact loaded polymers show a variety of strain-rate dependent mechanical properties in their elastic, plastic and failure behaviour. In contrast to purely crystalline materials, the volume of polymeric materials can significantly change under irreversible deformations. In this paper, uni-axial tensile tests were performed in order to measure the dilatation in the Polycarbonate-Acrylnitril-Butadien-Styrol (PC-ABS) Bayblend T65. The accumulation of dilatation was measured at deformation speeds of 0.1 and 500 [mm/s]. Instrumented with a pair of two high-speed cameras, volume segments in the samples were observed. The change in volume was quantified as relation between the deformed and initial volumes of the segments. It was observed that the measured dilatations are of great significance for the constitutive models. This is specifically demonstrated through comparisons of stress-strain relations derived from the two camera-perspectives with isochoric relations based on single-surface observations of the same experiments.


European Physical Journal Special Topic Digital Image Correlation Uniaxial Tension Deformation Speed Vary Strain Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Junginger, Charakterisierung und Modellierung unverstärkter thermoplastischer Kunststoffe zur numerischen Simulation von Crashvorgängen, Doctoral thesis (Fraunhofer EMI, Freiburg, 2004)Google Scholar
  2. 2.
    S. Kolling, A. Haufe, M. Feucht, P.A. Du Bois, Proceedings to the LS-DYNA Anwenderforum (Bamberg, Germany, 2005)Google Scholar
  3. 3.
    W. Arnold, E. Rottenkolber, Int. J. Impact Eng. 33, 53 (2006)CrossRefGoogle Scholar
  4. 4.
    Z. Li, J. Lambros, Int. J. Solids Struct. 38, 3549 (2001)MATHCrossRefGoogle Scholar
  5. 5.
    S. Sarva, S. Deschanel, M.C. Boyce, W. Chen, Polymer 48, 2208 (2007)CrossRefGoogle Scholar
  6. 6.
    S. Sarva, A.D. Mulliken, M.C. Boyce, Int. J. Solids Struct. 44, 2381 (2007)CrossRefGoogle Scholar
  7. 7.
    Y. Sato, M. Yoshida, K. Nagayama, Y. Horie, Int. J. Impact Eng. 35, 1778 (2008)CrossRefGoogle Scholar
  8. 8.
    S. Katz, E. Grossman, I. Gouzman, M. Murat, E. Weizel, H.D. Wagner, Int. J. Impact Eng. 12, 1606 (2008)CrossRefGoogle Scholar
  9. 9.
    S. Hiermaier, W. Riedel, C.J. Hayhurst, R.A. Clegg, C.M. Wentzel, Advanced Material Models for Hypervelocity Impact Simulations, Final report to European Space Agency project No. 12400/97/NL/PA(SC), Fraunhofer EMI, Freiburg, Germany, 1999Google Scholar
  10. 10.
    Structures under Crash and Impact (Springer, New York, 2008)Google Scholar
  11. 11.
    Bridgman, Studies in Large Plastic Flow and Fracture (McGraw Hill, New York, 1952)Google Scholar
  12. 12.
    L. Peroni, M. Avalle, M. Peroni, Int. J. Impact Eng. 35, 644 (2008)CrossRefGoogle Scholar
  13. 13.
    M. Wicklein, Zellulares Aluminium: Entwicklung eines makromechanischen Materialmodells mittels mesomechanischer Simulation, Doctoral Thesis (Fraunofer EMI, Freiburg, 2006)Google Scholar
  14. 14.
    H. DorMohammadi, A.R. Khoei, Int. J. Solids Struct. 45, 631 (2008)MATHCrossRefGoogle Scholar
  15. 15.
    R.A. Duckett, B.C. Goswami, L.S.A. Smith, I.M.Ward, A. M. Zihlif, British Polymer J. 10, 11 (1978)CrossRefGoogle Scholar
  16. 16.
    The Physics of Polymers (Springer, Berlin, 1996)Google Scholar
  17. 17.
    T.N. Krupenkin, G.H. Fredrickson, Macromolecules 32, 5036 (1999)ADSCrossRefGoogle Scholar
  18. 18.
    J. Rottler, M.O. Robbins, Phys. Rev. E 68, 011801 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    C.B. Bucknall, Polymer 48, 1030 (2007)CrossRefGoogle Scholar
  20. 20.
    C. G’Sell, J.M. Hiver, A. Dahoun, A. Souahi, J. Mater. Sci. 27, 5031 (1992)ADSCrossRefGoogle Scholar
  21. 21.
    S. Aloui, R. Othman, A. Poitou, P. Guegan, S. El-Borgi, Mech. Res. Comm. 35, 392 (2008)CrossRefGoogle Scholar
  22. 22.
    C. G’Sell, J. M. Hive, A. Dahoun, Int. J. Solids Struct. 39, 3857 (2002)CrossRefGoogle Scholar
  23. 23.
    C. G’Sell, J.-M. Hiver, French Patent Nr. 010542100, Bull Of INPI, 23 April 2001Google Scholar
  24. 24.
    F. Addiego, A. Dahoun, C. G’Sell, J.-M. Hiver, Polymer 47, 4387 (2006)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2012

Authors and Affiliations

  • S. Hiermaier
    • 1
  • F. Huberth
    • 1
  1. 1.Fraunhofer Institute for High Speed DynamicsErnst-Mach-Institute (EMI)FreiburgGermany

Personalised recommendations