The European Physical Journal Special Topics

, Volume 200, Issue 1, pp 73–89 | Cite as

On two possible definitions of the free energy for collective variables

  • C. Hartmann
  • J. C. Latorre
  • G. Ciccotti


The aim of this mini-review article is to clarify the relation between two distinct formulations of the thermodynamic free energy for collective variables which can be found in the molecular dynamics literature. In doing so, we discuss the different ensemble concepts underlying the two definitions and reveal their relation to strong confinement (restraints) and molecular constraints. The latter analysis is based on a variant of Federer’s coarea formula which can be regarded as a generalization of Fubini’s theorem for iterated integrals to curvilinear coordinates and which implies the famous “blue moon” ensemble identity for computing conditional expectations using constrained simulations. For illustration we will present a few paradigmatic examples.


Free Energy European Physical Journal Special Topic Conditional Expectation Molecular Simulation Helmholtz Free Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Kollman, Chem. Rev. 93, 2395 (1993)CrossRefGoogle Scholar
  2. 2.
    D. Frenkel, B. Smit, Understanding Molecular Dynamics: From Algorithms to Applications (Academic Press, London, 2002)Google Scholar
  3. 3.
    W. E, E. Vanden-Eijnden, Metastability, conformation dynamics, and transition pathways in complex systems. edited by S. Attinger, P. Koumoutsakos, Multiscale, Modelling, and Simulation (Springer, Berlin, 2004), p. 35Google Scholar
  4. 4.
    G.K. Schenter, B.C. Garrett, D.G. Truhlar J. Chem. Phys. 119, 5828 (2003)CrossRefADSGoogle Scholar
  5. 5.
    E. Vanden-Eijnden, F.A. Tal, J. Chem. Phys. 123, 184103 (2005)CrossRefADSGoogle Scholar
  6. 6.
    T. Mülders, P. Krüger, W., Swegat, L. Schlitter, J. Chem. Phys. 104, 4869 (1996)CrossRefADSGoogle Scholar
  7. 7.
    W.K. den Otter, W.J. Briels, J. Chem. Phys. 109, 4139 (1998)CrossRefADSGoogle Scholar
  8. 8.
    C. Hartmann, Ch. Schütte, Physica D 228, 59 (2007)CrossRefMATHADSMathSciNetGoogle Scholar
  9. 9.
    H. Rubin, P. Ungar, Comm. Pure Appl. Math. 10, 65 (1957)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    N.G. van Kampen, J.J. Lodder, Am. J. Phys. 52, 419 (1984)CrossRefADSGoogle Scholar
  11. 11.
    E.J. Hinch, J. Fluid. Mech. 271 (219 (1994)Google Scholar
  12. 12.
    G. Gallavotti, The Elements of Mechanics (Springer, New York, 1983)Google Scholar
  13. 13.
    R. Kubo, H. Ichimura, T. Usui, N. Hashitsume, Statistical Mechanics (North-Holland, Amsterdam, 1965)Google Scholar
  14. 14.
    H. Federer, Geometric Measure Theory (Springer, Berlin, 1969)Google Scholar
  15. 15.
    L.C. Evans, R.F. Gariepy, Measure Theory and Fine Properties of Functions (CRC Press, 1992)Google Scholar
  16. 16.
    C. Hartmann, Model Reduction in Classical Molecular Dynamics, Ph.D. thesis, Fachbereich Mathematik und Informatik (Freie Universität Berlin, 2007)Google Scholar
  17. 17.
    K. Ecker, Regularity Theory for Mean Curvature Flow, volume 75 of Progress in nonlinear differential equations and their applications (Birkhäuser, Boston, 2004)Google Scholar
  18. 18.
    G. Hummer,, I.G. Kevrekidis, J. Chem. Phys. 118, 10762 (2003)CrossRefADSGoogle Scholar
  19. 19.
    S. Yang, J.N. Onuchic, H. Levine, J. Chem. Phys. 125, 054910 (2006)CrossRefADSGoogle Scholar
  20. 20.
    R. Hegger, G. Stock, J. Chem. Phys. 130, 034106 (2009)CrossRefADSGoogle Scholar
  21. 21.
    R.B. Best, G. Hummer, Proc. Natl. Acad. Sci. USA 107, 1088 (2010)CrossRefADSGoogle Scholar
  22. 22.
    C. Hartmann. Balanced model reduction of partially observed langevin equations: an averaging principle. Math. Comput. Model. Dyn. Syst. (to appear) (2011)Google Scholar
  23. 23.
    A.J. Chorin, O.H. Hald, R. Kupferman, Physica D 166, 239 (2002)CrossRefMATHADSMathSciNetGoogle Scholar
  24. 24.
    B. Øksendal, Stochastic differential equations: an introduction with applications (Springer, Berlin, 2003)Google Scholar
  25. 25.
    I. Gyöngy, Probab. Th. Rel. Fields 71, 501 (1986)CrossRefMATHGoogle Scholar
  26. 26.
    A.J. Chorin, O.H. Hald, Stochastic Tools in Mathematics and Science (Springer, New York, 2006)Google Scholar
  27. 27.
    F. Legoll, T. Lelièvre, Nonlinearity 23, 2131 (2010)CrossRefMATHADSMathSciNetGoogle Scholar
  28. 28.
    L. Maragliano, A. Fischer, E. Vanden-Eijnden, G. Ciccotti, J. Chem. Phys. 125, 024106 (2006)CrossRefADSGoogle Scholar
  29. 29.
    H. Eyring, J. Chem. Phys., 3 107 (1935)CrossRefADSGoogle Scholar
  30. 30.
    E.P. Wigner, J. Chem. Phys. 5, 720 (1937)CrossRefADSGoogle Scholar
  31. 31.
    D. Chandler, J. Chem Phys. 68, 2959 (1978)CrossRefADSGoogle Scholar
  32. 32.
    J. Horiuti, Bull. Chem. Soc. Jpn. 13, 210 (1938)CrossRefGoogle Scholar
  33. 33.
    M. Fixman, Proc. Natl. Acad. Sci. USA 71, 3050 (1974)CrossRefADSGoogle Scholar
  34. 34.
    J.G. Kirkwood, J. Chem. Phys. 3, 300 (1935)CrossRefADSGoogle Scholar
  35. 35.
    T.P. Straatsma, J.A. McCammon, J. Chem. Phys. 95, 1175 (1991)CrossRefADSGoogle Scholar
  36. 36.
    C. Hartmann, J. Stat. Phys. 130, 687)2008)CrossRefMATHADSMathSciNetGoogle Scholar
  37. 37.
    G. Ciccotti, T. Lelièvre, E. Vanden-Eijnden, Commun. Pure Appl. Math. 61, 371 (2008)CrossRefMATHGoogle Scholar
  38. 38.
    T. Lelièvre, M. Rousset, G. Stoltz, Free Energy Computations: A Mathematical Perspective (Imperial College Press, London, 2010)Google Scholar
  39. 39.
    G. Ciccotti, R. Kapral, E. Vanden-Eijnden, Chem. Phys. Chem. 6, 1809 (2005)CrossRefGoogle Scholar
  40. 40.
    E.A. Carter, G. Ciccotti, J.T. Hynes, R. Kapral, Chem. Phys. Lett. 156, 472 (1989)CrossRefADSGoogle Scholar
  41. 41.
    J. Walter, C. Hartmann, J. Maddocks, Eur. Phys. J. Special Topics 200, 153 (2011)CrossRefADSGoogle Scholar
  42. 42.
    S. Reich, Physica D 89, 28 (1995)CrossRefMATHMathSciNetGoogle Scholar
  43. 43.
    F.A. Bornemann, Homogenization of Singularly Perturbed Mechanical Systems, volume 1687 of Lecture Notes in Mathematics (Springer, Berlin, 1998)Google Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  1. 1.Institut für MathematikFreie Universität BerlinBerlinGermany
  2. 2.Dipartimento di FisicaUniversità di Roma “La Sapienza”RomaItaly
  3. 3.School of PhysicsUniversity CollegeDublinIreland

Personalised recommendations