Advertisement

The European Physical Journal Special Topics

, Volume 199, Issue 1, pp 111–125 | Cite as

High degree of entanglement and nonlocality of a two-photon state generated at 532 nm

  • F. Sciarrino
  • G. Vallone
  • G. Milani
  • A. Avella
  • J. Galinis
  • R. Machulka
  • A. M. Perego
  • K. Y. Spasibko
  • A. Allevi
  • M. Bondani
  • P. MataloniEmail author
Regular Article

Abstract

In the last years the attention of the scientific community on the generation of entangled states has constantly increased both for their importance in the foundation of quantum mechanics and for their application in the quantum computation and communication field. To these aims high quality of generated states is required. A standard procedure to produce entangled photons pairs is spontaneous down conversion process in nonlinear crystals. In this paper we report preparation of quantum entangled states using CW laser at 266 nm pumping the standard Kwiat’s source. We have been able to generate the full set of Bell’s states with very high purity, fidelity and Concurrence which have been estimated using standard tomography procedure. To proof the high degree of achieved entanglement, we performed a non-locality test obtaining a high violation of the CHSH inequality.

Keywords

Density Matrix Entangle State European Physical Journal Special Topic Wave Plate Polarize Beam Splitter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935)CrossRefzbMATHADSGoogle Scholar
  2. 2.
    D.F.V. James, P.G. Kwiat, W.J. Munro, A.G. White, Phys. Rev. A 64, 052312 (2001)CrossRefADSGoogle Scholar
  3. 3.
    J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Phys. Rev. Lett. 23, 880 (1969)CrossRefADSGoogle Scholar
  4. 4.
    M. Genovese, Phys. Rep. 413, 319 (2005)CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    R. Filip, M. Gavenda, J. Soubusta, A. Cernoch, M. Dušek, Phys. Rev. Lett. 93, 180404 (2004)CrossRefADSGoogle Scholar
  6. 6.
    J.S. Bell, Physics 1, 195 (1964)Google Scholar
  7. 7.
    J.I. Cirac, A.K. Ekert, S.F. Huelga, C. Macchiavello, Phys. Rev. A 59, 4249 (1999)CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    V. Giovannetti, S. Lloyd, L. Maccone, Science 306, 1330 (2004)CrossRefADSGoogle Scholar
  9. 9.
    V. Giovannetti, S. Lloyd, L. Maccone, Phys. Rev. Lett. 96, 010401 (2006)CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    H.J. Briegel, R. Raussendorf, Phys. Rev. Lett. 86, 910 (2001)CrossRefADSGoogle Scholar
  11. 11.
    P.G. Kwiat, E. Waks, A.G. White, I. Appelbaum, P.H. Eberhard, Phys. Rev. A 60, R773 (1999)CrossRefADSGoogle Scholar
  12. 12.
    Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, K. Nakamura, Phys. Rev. A 66, 033816 (2002)CrossRefADSGoogle Scholar
  13. 13.
    V.G. Dmitriev, G.G. Gurzadyan, D.N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 1991)Google Scholar
  14. 14.
    P.G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A.V. Sergienko, Y. Shih, Phys. Rev. Lett. 75, 4337 (1995)CrossRefADSGoogle Scholar
  15. 15.
    N.K. Langford, T.J. Weinhold, R. Prevedel, K.J. Resch, A. Gilchrist, J.L. O’Brien, G.J. Pryde, A.G. White, Phys. Rev. Lett. 95, 210504 (2005)CrossRefADSGoogle Scholar
  16. 16.
    T. Wei, et al., Phys. Rev. A 67, 022110 (2003)CrossRefADSGoogle Scholar
  17. 17.
    C.H. Monken, P.H. Souto Ribeiro, S. Pádua Phys. Rev. A 57, R2267 (1998)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  • F. Sciarrino
    • 1
    • 2
  • G. Vallone
    • 1
    • 3
  • G. Milani
    • 1
  • A. Avella
    • 4
  • J. Galinis
    • 5
  • R. Machulka
    • 6
  • A. M. Perego
    • 7
  • K. Y. Spasibko
    • 8
  • A. Allevi
    • 7
  • M. Bondani
    • 9
  • P. Mataloni
    • 1
    • 2
    Email author
  1. 1.Dipartimento di FisicaSapienza Università di RomaRomaItaly
  2. 2.Istituto Nazionale di Ottica (INO-CNR)FirenzeItaly
  3. 3.Dipartimento di Ingegneria dell’InformazioneUniversità degli Studi PadovaPadovaItaly
  4. 4.Dipartimento di Fisica TeoricaUniversità degli Studi di TorinoTorinoItaly
  5. 5.Department of Quantum ElectronicsVilnius UniversityVilniusLithuania
  6. 6.Regional Centre of Advanced Technologies and Materials, Joint Laboratory of Optics of Palacky University and Institute of Physics of Academy of Sciences of the Czech Republic, Faculty of SciencePalacky UniversityOlomoucCzech Republic
  7. 7.Dipartimento di Fisica e MatematicaUniversità degli Studi dell’InsubriaComoItaly
  8. 8.Department of PhysicsM. V. Lomonosov Moscow State UniversityMoscowRussia
  9. 9.Istituto di Fotonica e NanotecnologieConsiglio Nazionale delle Ricerche and C.N.I.S.M.ComoItaly

Personalised recommendations