Can diffuse-interface models quantitatively describe moving contact lines?

Regular Article

Abstract

The three-phase contact line is a long-standing problem in the physics and hydrodynamics of interfaces. The traditional sharp-interface Navier-Stokes formulation encounters a non-integrable stress singularity, which is commonly avoided by introducing slip at the contact line. In recent years, diffuse-interface models have emerged as an alternative method. They are attractive in regularizing the singularity in a more rational manner, and in the meantime supplying a means for describing the interfacial motion on the large scale. Although a number of groups have carried out diffuse-interface computations of moving contact lines, a closer inspection shows that some fundamental questions remain to be answered. For example, how can a sharp-interface limit be realized to produce a solution that is independent of the interfacial thickness? How to determine model parameters so as to match a specific experiment? Finally, is it possible to make quantitatively accurate predictions of the moving contact line using diffuse-interface models? Using the Cahn-Hilliard model as an example, we describe these issues and suggest solutions.

Keywords

Contact Angle European Physical Journal Special Topic Contact Line Slip Length Dynamic Contact Angle 

References

  1. 1.
    E.B. Dussan , V., Ann. Rev. Fluid Mech. 11, 371 (1979)ADSCrossRefGoogle Scholar
  2. 2.
    Y. Pomeau, C. R. Mécanique 330, 207 (2002)MATHCrossRefGoogle Scholar
  3. 3.
    T.D. Blake, J. Colloid Interface Sci. 299, 1 (2006)CrossRefGoogle Scholar
  4. 4.
    T. Qian, X.P. Wang, P. Sheng, Commun. Comput. Phys. 1, 1 (2006)Google Scholar
  5. 5.
    O.V. Voinov, Fluid Dynam. 11, 714 (1976)ADSCrossRefGoogle Scholar
  6. 6.
    R.G. Cox, J. Fluid Mech. 168, 169 (1986)ADSMATHCrossRefGoogle Scholar
  7. 7.
    R.L. Hoffman, J. Colloid Interface Sci. 50, 228 (1975)CrossRefGoogle Scholar
  8. 8.
    S.H. Tanner, J. Phys. D: Appl. Phys. 12, 1473 (1979)ADSCrossRefGoogle Scholar
  9. 9.
    M. Fermigier, P. Jenffer, J. Colloid Interface Sci. 146, 226 (1991)CrossRefGoogle Scholar
  10. 10.
    P.D.M. Spelt, J. Comput. Phys. 207, 389 (2005)MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    J. Zhang, M.J. Miksis, S.G. Bankoff, Phys. Fluids 18, 072106 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    M. Renardy, Y. Renardy, J. Li, J. Comput. Phys. 171, 243 (2001)ADSMATHCrossRefGoogle Scholar
  13. 13.
    A. Mazouchi, C.M. Gramlich, G.M. Homsy, Phys. Fluids 16, 1647 (2004)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    T.D. Blake, J.M. Haynes, J. Colloid Interface Sci. 30, 421 (1969)CrossRefGoogle Scholar
  15. 15.
    L.M. Pismen, Colloids Surfaces A 206, 11 (2002)CrossRefGoogle Scholar
  16. 16.
    P. Seppecher, Int. J. Eng. Sci. 34, 977 (1996)MATHCrossRefGoogle Scholar
  17. 17.
    D. Jacqmin, J. Fluid Mech. 402, 57 (2000)MathSciNetADSMATHCrossRefGoogle Scholar
  18. 18.
    D. Jacqmin, J. Fluid Mech. 517, 209 (2004)MathSciNetADSMATHCrossRefGoogle Scholar
  19. 19.
    W. Villanueva, G. Amberg, Int. J. Multiphase Flow 32, 1072 (2006)MATHCrossRefGoogle Scholar
  20. 20.
    V.V. Khatavkar, P.D. Anderson, H.E.H. Meijer, J. Fluid Mech. 572, 367 (2007)MathSciNetADSMATHCrossRefGoogle Scholar
  21. 21.
    H. Ding, P.D.M. Spelt, J. Fluid Mech. 576, 287 (2007)ADSMATHCrossRefGoogle Scholar
  22. 22.
    J.J. Huang, C. Shu, Y.T. Chew, Int. J. Numer. Method Fluids 60, 203 (2009)MathSciNetADSMATHCrossRefGoogle Scholar
  23. 23.
    P. Gao, J.J. Feng, Phys. Fluids 21, 102102 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    P. Yue, C. Zhou, J.J. Feng, J. Fluid Mech. 645, 279 (2010)MathSciNetADSMATHCrossRefGoogle Scholar
  25. 25.
    P. Yue, J.J. Feng, Phys. Fluids 23, 012106 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    T. Qian, X.P. Wang, P. Sheng, J. Fluid Mech. 564, 333 (2006)MathSciNetADSMATHCrossRefGoogle Scholar
  27. 27.
    A. Carlson, M. Do-Quang, G. Amberg, Phys. Fluids 21, 121701 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    G. Caginalp, X. Chen, Eur. J. Appl. Math. 9, 417 (1998)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    P. Yue, C. Zhou, J.J. Feng, C.F. Ollivier-Gooch, H.H. Hu, J. Comput. Phys. 219, 47 (2006)MathSciNetADSMATHCrossRefGoogle Scholar
  30. 30.
    C. Zhou, P. Yue, J.J. Feng, C.F. Ollivier-Gooch, H.H. Hu, J. Comput. Phys. 229, 498 (2010)MathSciNetADSMATHCrossRefGoogle Scholar
  31. 31.
    C. Cottin-Bizonne, A. Steinberger, B. Cross, O. Raccurt, E. Charlaix, Langmuir 24, 1165 (2008)CrossRefGoogle Scholar
  32. 32.
    C.G. Ngan, E.B. Dussan, V.Dussan, J. Fluid Mech. 209, 191 (1989)ADSCrossRefGoogle Scholar
  33. 33.
    J.A. Marsh, S. Garoff, E.B. Dussan V., Phys. Rev. Lett. 70, 2778 (1993)ADSCrossRefGoogle Scholar
  34. 34.
    S. Somalinga, A. Bose, Phys. Fluids 12, 499 (2000)ADSMATHCrossRefGoogle Scholar
  35. 35.
    E.B. Dussan V., E. Rame, S. Garoff, J. Fluid Mech. 230, 97 (1991)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  1. 1.Department of MathematicsVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  2. 2.Department of Chemical and Biological EngineeringUniversity of British ColumbiaVancouverCanada
  3. 3.Department of MathematicsUniversity of British ColumbiaVancouverCanada

Personalised recommendations