Time-space fractional Schrödinger like equation with a nonlocal term

Applications Regular Article


In this paper a time-space fractional Schrödinger equation containing a nonlocal term has been studied. The time dependent solutions have been obtained in terms of the H-function. New general results include the results of integer Schrödinger equation with a nonlocal term and the well-known quantum formulae for a free particle kernel.


European Physical Journal Special Topic Fractional Derivative Fractional Calculus Caputo Fractional Derivative Fractional Quantum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006)Google Scholar
  2. 2.
    G.M. Zaslavsky, Phys. Rep. 371, 461 (2002)MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    F. Mainardi, Yu. Luchko, G. Pagnini, Fract. Calc. Appl. Anal. 4, 153 (2001)MathSciNetMATHGoogle Scholar
  4. 4.
    A. Carpinteri, F. Mainardi (eds.), Fractals and Fractional Calculus in Continuum Mechanics (Springer-Verlag, New York, 1997)Google Scholar
  5. 5.
    W.C. Tan, C.Q. Fu, et al., Appl. Phys. Lett. 91, 183901 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    W. Chen, Chao Soliton Fract. 28, 923 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    C.P. Li, Y.H. Wang, Comp. Math. Appl. 57, 1672 (2009)MATHCrossRefGoogle Scholar
  8. 8.
    N. Laskin, Phys. Lett. A 268, 298 (2000)MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals (Mc Graw-Hill, New York, 1965)Google Scholar
  10. 10.
    R.P. Feynman, Statistical Mechanics (Benjamin. Reading, MA, 1972)Google Scholar
  11. 11.
    N. Laskin, Commun. Nonlinear. Sci. Numer. Simul. 12, 2 (2007)MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    M. Naber, J. Math. Phys. 45, 3339 (2004)MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    S.W. Wang, M.Y. Xu, J. Math. Phys. 48, 043502 (2007)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    J.P. Dong, M.Y. Xu, J. Math. Anal. Appl. 344, 1005 (2008)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    A. Iomin, Phys. Rev. E 80, 022103 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999)Google Scholar
  17. 17.
    M. Caputo, Geophys J. Roy, Astron. Soc. 13, 529 (1967)Google Scholar
  18. 18.
    E.K. Lenzi, B.F. de Oliveira, et al., J. Math. Phys, 49, 032108 (2008)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    X.Y. Jiang, M.Y. Xu, J. Phys. A: Math. Theor. 42, 385201 (2009)MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    H.T. Qi, M.Y. Xu, Appl. Math. Model. 33, 4184 (2009)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    A.M. Mathai, R. Saxena, H. J. Haubold, The H-Function.Theory and Applications (Springer, New York, 2010)Google Scholar
  22. 22.
    T.A.M. Langlands, Physica A 367, 136 (2006)MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    W.G. Glöckle, T.F. Nonnenmacher, J. Stat. Phys. 71, 741 (1993)ADSMATHCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  1. 1.School of Mathematics, Shandong UniversityJinanPR China

Personalised recommendations