The European Physical Journal Special Topics

, Volume 191, Issue 1, pp 3–14 | Cite as

Synchronization of slow-fast systems

  • I. Omelchenko
  • M. Rosenblum
  • A. Pikovsky
Regular article

Abstract.

We describe different patterns of synchronization of two systems, each possessing oscillations on two very different time scales. Synchronization of slow and fast oscillations are characterized separately, leading to a possibility to observe partially synchronized states where, e.g., the slow motions are synchronous while the fast are desynchronized. As a first example we study two diffusively coupled Hindmarsh-Rose oscillators in the regime of regular or chaotic bursting and describe different synchronous states like phase synchronization of slow variables, burst and spike synchronization of fast variables, and complete synchronization. Next, we study two coupled four-dimensional model systems with chaotic slow dynamics and find phase synchronization of slow motion, complete and partially complete synchrony.

Keywords

Phase Portrait European Physical Journal Special Topic Slow Variable Phase Synchronization Fast Variable 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Fujimoto, K. Kaneko, Physica D 180, 1 (2003)MATHCrossRefMathSciNetADSGoogle Scholar
  2. 2.
    A. Mazzino, S. Musacchio, A. Vulpiani, Phys. Rev. E 71, 011113 (2005)CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    V.M. Volosov Uspehi, Math. Nauk 17, 3 (1962), in RussianGoogle Scholar
  4. 4.
    N.N. Bogoliubov, Y.A. Mitropolsky, Asymptotic Methods in the Theory of Nonlinear Oscillations (Gordon and Breach, New York, 1961)Google Scholar
  5. 5.
    J.F.M. Avila, H.L.D.S. Cavalcante, J.R. Rios Leite, Phys. Rev. Lett. 93, 144101 (2004)CrossRefADSGoogle Scholar
  6. 6.
    I. Wedekind, U. Parlitz, Phys. Rev. E 66, 026218 (2002)CrossRefADSGoogle Scholar
  7. 7.
    S. Singh, J.M. Powers, S. Paolucci, J. Chem. Phys. 117, 1482 (2002)CrossRefADSGoogle Scholar
  8. 8.
    F.L. Vernon, R.J. Pedersen, J. Appl. Phys. 39, 2661 (1968)CrossRefADSGoogle Scholar
  9. 9.
    D.B. Sullivan, et al., J. Appl. Phys. 41, 4865 (1970)CrossRefADSGoogle Scholar
  10. 10.
    Y. Taur, P.L. Richards, J. Appl. Phys. 46, 1793 (1975)CrossRefADSGoogle Scholar
  11. 11.
    N. Calander, T. Claeson, S. Rudner, Appl. Phys. Lett. 39, 504 (1981)CrossRefADSGoogle Scholar
  12. 12.
    E. Neumann, A. Pikovsky, Eur. Phys. J. B 34, 293 (2003)CrossRefADSGoogle Scholar
  13. 13.
    M. Higuera, E. Knobloch, J.M. Vega, Theor. Comp. Fluid Dynamics 18, 323 (2004)MATHCrossRefADSGoogle Scholar
  14. 14.
    E.A. Stern, D. Jaeger, C.J. Wilson, Nature 394, 475 (1998)CrossRefADSGoogle Scholar
  15. 15.
    R.C. Elson, et al., Phys. Rev. Lett. 81, 5692 (1998)CrossRefADSGoogle Scholar
  16. 16.
    P. Varona, et al., Biol. Cybern. 84, 91 (2001), see also review by D. Golomb, D. Hansel, G. Mato, in Neuro-informatics, edited by F.Moss, S. Gielen (Elsevier, Amsterdam, 2001), vol. 4 of Handbook of Biological Physics, p. 887Google Scholar
  17. 17.
    M. Dhamala, V.K. Jirsa, M. Ding, Phys. Rev. Lett. 92, 028101 (2004)CrossRefADSGoogle Scholar
  18. 18.
    Y. Jiang, Phys. Rev. Lett. 93, 229801 (2004)CrossRefADSGoogle Scholar
  19. 19.
    A. Shilnikov, G. Cymbalyuk, Phys. Rev. Lett. 94, 048101 (2005)CrossRefADSGoogle Scholar
  20. 20.
    J.L. Hindmarsh, R.M. Rose, Proc. R. Soc. Lond. B 221, 87 (1984)CrossRefADSGoogle Scholar
  21. 21.
    A.L. Hodgkin, A.F. Huxley, J. Physiol. 117, 500 (1952)Google Scholar
  22. 22.
    J. Guckenheimer, J. Tien, A. Willms, in Bifurcations in the fast dynamics of neurons: implications for bursting, Bursting, The Genesis of Rhythm in the Nervous System, edited by S. Coombes, P.C. Bressloff (World Scientific, 2005)Google Scholar
  23. 23.
    G. Innocenti, A. Morelli, R. Genesio, A. Torcini, Chaos 17, 043128 (2007)CrossRefMathSciNetADSGoogle Scholar
  24. 24.
    A.L. Shilnikov, M.L. Kolomiets, Tutorial. J. Bifurcations Chaos 18, 1 (2008)CrossRefMathSciNetGoogle Scholar
  25. 25.
    I. Belykh, E. de Lange, M. Hasler, Phys. Rev. Lett. 94, 188101 (2005)CrossRefADSGoogle Scholar
  26. 26.
    M.V. Ivanchenko, G.V. Osipov, V.D. Shalfeev, J. Kurths, Phys. Rev. Lett. 98, 108101 (2007)CrossRefADSGoogle Scholar
  27. 27.
    N. Burić, K. Todorović, N. Vasović, Phys. Rev. E 75, 067204 (2007)CrossRefADSGoogle Scholar
  28. 28.
    I. Belykh, A. Shilnikov, Phys. Rev. Lett. 101, 078102 (2008)CrossRefADSGoogle Scholar
  29. 29.
    N. Burić, K. Todorović, N. Vasović, Phys. Rev. E 78, 036211 (2008)CrossRefADSGoogle Scholar
  30. 30.
    X. Liang, M. Tang, M. Dhamala, Z. Liu, Phys. Rev. E 80, 066202 (2009)CrossRefADSGoogle Scholar
  31. 31.
    S. Jalil, I. Belykh, A. Shilnikov, Phys. Rev. E 81, 045201 (2010)CrossRefADSGoogle Scholar
  32. 32.
    S.V. Kijashko, A.S. Pikovsky, M.I. Rabinovich, Sov. J. Commun. Technol. Electronics 25 (1980)Google Scholar
  33. 33.
    A.S. Pikovsky, M.I. Rabinovich, Physica D 2, 8 (1981)MATHCrossRefMathSciNetADSGoogle Scholar
  34. 34.
    A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization. A Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, 2001)Google Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  • I. Omelchenko
    • 1
  • M. Rosenblum
    • 1
  • A. Pikovsky
    • 1
  1. 1.Department of Physics and AstronomyPotsdam UniversityPotsdamGermany

Personalised recommendations