The European Physical Journal Special Topics

, Volume 189, Issue 1, pp 279–284 | Cite as

Dynamic study of N’N-dimethylparanitroaniline encapsulated in silicalite-1 matrix using neutron spin-echo spectroscopy

  • D.S. Bhange
  • C. Dejoie
  • F. Porcher
  • N. Malikova
  • P. Martinetto
  • E. Dooryhée
  • M. Anne
Regular Article

Abstract.

The present work focuses on the dynamic studies of N’N-dimethyl-paranitroaniline (dmpNA) encapsulated in silicalite zeolite. Quasielastic neutron scattering (QENS) experiments are carried out using neutron spin-echo technique. Polarisation of the scattered neutron beam is measured at carefully chosen values of Q = 0.35, 0.9, 1.1 and 1.45  Å−1 at fixed T = 298  K and at fixed Q = 0.9  Å−1 at 150, 200, 250 and 298 K. This gives insight into the motion and the related activation energy of the guest dmpNA molecule. The quasielastic signal observed in the present system within the time range considered is due to fast local rotational motions of protons of the end methyl groups. The results are in good agreement with the dynamics of methyl group rotations reported in the literature by back-scattering QENS technique.

Keywords

Zeolite European Physical Journal Special Topic Silicalite Neutron Spin Echo Methyl Group Rotation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Bruhwiler, L. Dieu, G. Calzaferri, Chimia 61, 820 (2007)CrossRefGoogle Scholar
  2. 2.
    M. Pauchard, A. Devaux, G. Calzaferri, Chem. Eur. J. 6, 3456 (2000)CrossRefGoogle Scholar
  3. 3.
    C. Dejoie, Ph.D. thesis, University Joseph Fourier, 2009Google Scholar
  4. 4.
    P. Gomez-Romero, C. Sanchez, New J. Chem. 29, 57 (2005)CrossRefGoogle Scholar
  5. 5.
    S.C. Rastogi, Bull. Environ. Contam. Toxicol. 48, 289 (1992)Google Scholar
  6. 6.
    S. Megelski, A. Lieb, M. Pauchard, A. Drechsler, S. Glaus, C. Debus, A.J. Meixner, G. Calzaferri, J. Phys. Chem. B 105, 25 (2001)CrossRefGoogle Scholar
  7. 7.
    H. Jobic, D.N. Theodorou, Micropor. Mesopor. Mater. 102, 21 (2007)CrossRefGoogle Scholar
  8. 8.
    J.L. Guth, H. Kessler, R. Wey, Proc. 7th Int. Zeolite Conf. Tokyo 1986, edited by Y. Murakami, A. lijima, J.W. Ward (Elsevier, 1986)Google Scholar
  9. 9.
    F. Mezei (ed.), Neutron Spin-Echo, Lecture Notes in Physics (Springer, Berlin, 1980)Google Scholar
  10. 10.
    M. Bée, Quasielastic Neutron Scattering (Adam Hilger, Bristol, 1988)Google Scholar
  11. 11.
    A.J. Dianoux, F. Volino, H. Hervet, Molec. Phys. 30, 1181 (1975)CrossRefADSGoogle Scholar
  12. 12.
    M. Pfenniger, G. Calzaferri, Chem. Phys. Chem. 4, 211 (2000)Google Scholar
  13. 13.
    ILL, Research proposal no. 38703 (2008)Google Scholar
  14. 14.
    C. Smuda, G. Gemmecker, T. Unruh, J. Chem. Phys. 128, 194502 (2008)CrossRefADSGoogle Scholar
  15. 15.
    C. Zhang, V. Arrighi, S. Gagliardi, I.J. McEwen, J. Tanchawanich, M.T.F. Telling, J.M. Zanotti, Chem. Phys. 328, 53 (2006)CrossRefADSGoogle Scholar
  16. 16.
    F. Volino, A.J. Dianoux, R.E. Lechner, H. Hervet, J. Phys. Colloques (France) 36, C1-83 (1975)Google Scholar

Copyright information

© EDP Sciences and Springer 2010

Authors and Affiliations

  • D.S. Bhange
    • 1
    • 2
  • C. Dejoie
    • 1
  • F. Porcher
    • 3
    • 4
  • N. Malikova
    • 3
  • P. Martinetto
    • 1
  • E. Dooryhée
    • 1
    • 5
  • M. Anne
    • 1
  1. 1.Institut Néel, UPR 2940, CNRS/UJFGrenoble Cedex 09France
  2. 2.Catalysis Division, National Chemical LaboratoryPuneIndia
  3. 3.Laboratoire Léon Brillouin (CEA-CNRS)Gif-sur-Yvette CedexFrance
  4. 4.Cristallographie, Résonance Magnétique et Modélisation, UMR 7036 CNRS-Université de NancyVandoeuvre-lès-NancyFrance
  5. 5.National Synchrotron Light Source-II, Brookhaven National LaboratoryUptonUSA

Personalised recommendations