The European Physical Journal Special Topics

, Volume 189, Issue 1, pp 187–195 | Cite as

Calorimetric study of blend miscibility of polymers confined in ultra-thin films

  • W. Jiang
  • M. Du
  • Q. Gu
  • J. Jiang
  • H. Huth
  • D. Zhou
  • G. Xue
  • C. Schick
Regular Article


Miscibility in blends of polystyrene and poly(phenylene oxide) (PS/PPO) confined in thin films (down to 6 nm) was investigated using a recently developed sensitive differential alternating current (AC) chip calorimeter. Comparison of composition dependence of glass transition in thin films with common models should provide information on miscibility. This study focuses on the blend system polystyrene and poly(phenylene oxide) (PS/PPO) because it is thought as a miscible model system in the whole composition range. Furthermore, its local dynamic heterogeneity is already identified by dynamic mechanic thermal analysis (DMTA) and solid state NMR techniques. For this blend, we find that even for the thinnest films (6 nm, corresponding to about half of PPO’s radius of gyration R g) only one glass transition is observed. The composition dependence of T g is well described by the Fox, Couchman or Gordon-Taylor mixing law that are used for the miscible bulk blends. Although there is a contradicting result on whether T g decreases with decreasing film thickness between our calorimetric measurements and Kim’s elipsometric measurements on the same blend (Kim et al. Macromolecules 2002, 35, 311–313), the conclusion that the good miscibility between PS and PPO remains in ultrathin films holds for both studies. Finally, we show that our chip calorimeter is also sensitive enough to study the inter-layer diffusion in ultrathin films. PS chain in a thin PS/PPO double layer that is prepared by spin coating PPO and PS thin film in tandem will gradually diffuse into the PPO layer when heated above T g of PS, forming a PSxPPO100−x blend. However, above the PSxPPO100−x blend, there exists an intractable pure PS like layer (∼30  nm in our case) that does not diffuse into the blend beneath even staying at its liquid state over 10 hours.


Glass Transition European Physical Journal Special Topic Alternate Current Composition Dependence Dynamic Mechanic Thermal Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Tanaka, J.S. Yoon, A. Takahara, T. Kajiyama, Macromolecules 28, 934 (1995)CrossRefADSGoogle Scholar
  2. 2.
    L. Hamon, Y. Grohens, Y. Holl, Langmuir 19, 10399 (2003)CrossRefGoogle Scholar
  3. 3.
    B.M. Besancon, C.L. Soles, P. F. Green, Phys. Rev. Lett. 97, 4 (2006)CrossRefGoogle Scholar
  4. 4.
    Z.M. Ao, Q. Jiang, Langmuir 22 (3), 1241 (2006)CrossRefGoogle Scholar
  5. 5.
    X. Li, Z. Wang, L. Cui, R.B. Xing, Y.C. Han, L.J. An, Surf. Sci. 571, 12 (2004)CrossRefADSGoogle Scholar
  6. 6.
    X.F. Li, M.M. Denn, Ind. Eng. Chem. Res. 43, 354 (2004)CrossRefGoogle Scholar
  7. 7.
    Z.M. Ao, Q. Jiang, Langmuir 22, 1241 (2006)CrossRefGoogle Scholar
  8. 8.
    H. Grull, L. Sung, A. Karim, J.F. Douglas, S.K. Satija, M. Hayashi, H. Jinnai, T. Hashimoto, C.C. Han, Europhys. Lett. 65, 671 (2004)CrossRefADSGoogle Scholar
  9. 9.
    H. Ogawa, T. Kanaya, K. Nishida, G. Matsuba, presented at the 3rd International Workshop on Dynamics in Confinement, Grenoble, France, 2006 (unpublished)Google Scholar
  10. 10.
    S.M. Zhu, Y. Liu, M. Rafailovich, J. Sokolov, D. Gersappe, D.A. Winesett, H. Ade, Abstr. Papers Amer. Chem. Soc. 218, 109 (1999)Google Scholar
  11. 11.
    S. Zhu, Y. Liu, M.H. Rafailovich, J. Sokolov, D. Gersappe, D.A. Winesett, H. Ade, Nature 400, 49 (1999)CrossRefADSGoogle Scholar
  12. 12.
    T.P. Lodge, T.C.B. McLeish, Macromolecules 33, 5278 (2000)CrossRefADSGoogle Scholar
  13. 13.
    J.L. Keddie, R.A.L. Jones, R.A. Cory, Faraday Discuss. 98, 219 (1994)CrossRefGoogle Scholar
  14. 14.
    J.A. Forrest, K. Dalnoki-Veress, J.R. Dutcher, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 56, 5705 (1997)Google Scholar
  15. 15.
    Y. Grohens, M. Brogly, C. Labbe, M.O. David, J. Schultz, Langmuir 14, 2929 (1998)CrossRefGoogle Scholar
  16. 16.
    J.H. Kim, J. Jang, W.C. Zin, Langmuir 16, 4064 (2000)CrossRefGoogle Scholar
  17. 17.
    M.Y. Efremov, S.S. Soofi, A.V. Kiyanova, C.J. Munoz, P. Burgardt, F. Cerrina, P.F. Nealey, Rev. Sci. Instrum. 79, 043903 (2008)CrossRefADSGoogle Scholar
  18. 18.
    V. Lupascu, H. Huth, C. Schick, M. Wübbenhorst, Thermochim. Acta 432, 222 (2005)CrossRefGoogle Scholar
  19. 19.
    A. Serghei, H. Huth, M. Schellenberger, C. Schick, F. Kremer, Phys. Rev. E 71, 061801 (2005)CrossRefADSGoogle Scholar
  20. 20.
    A. Serghei, H. Huth, C. Schick, F. Kremer, Macromolecules 41, 3636 (2008)CrossRefADSGoogle Scholar
  21. 21.
    A. Serghei, F. Kremer, Progr. Coll. Polym. Sci. 132, 33 (2006)CrossRefGoogle Scholar
  22. 22.
    A. Serghei, F. Kremer, Macromol. Chem. Phys. 209, 810 (2008)CrossRefGoogle Scholar
  23. 23.
    A. Serghei, F. Kremer, Macromol. Chem. Phys. 209, 1415 (2008)CrossRefGoogle Scholar
  24. 24.
    L. Xie, G.B. DeMaggio, W.E. Frieze, J. DeVries, D.W. Gidley, H.A. Hristov, A.F. Yee, Phys. Rev. Lett. 74, 4947 (1995)CrossRefADSGoogle Scholar
  25. 25.
    G.B. De Maggio, W.E. Frieze, D.W. Gidley, M. Zhu, A. Hristov, A.F. Yee, Phys. Rev. Lett. 78, 1524 (1997)CrossRefADSGoogle Scholar
  26. 26.
    W.E. Wallace, J.H. Vanzanten, W.L. Wu, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 52, R3329 (1995)Google Scholar
  27. 27.
    T. Miyazaki, R. Inoue, K. Nishida, T. Kanaya, Eur. Phys. J. Special Topics 141, 203 (2007)CrossRefGoogle Scholar
  28. 28.
    D.S. Zhou, H. Huth, G. Xue, C. Schick, Macromolecules 42, 7662 (2008)CrossRefADSGoogle Scholar
  29. 29.
    M.Y. Efremov, J.T. Warren, E.A. Olson, M. Zhang, A.T. Kwan, L.H. Allen, Macromolecules 35, 1481 (2002)CrossRefADSGoogle Scholar
  30. 30.
    M.Y. Efremov, E.A. Olson, M. Zhang, Z. Zhang, L.H. Allen, Macromolecules 37, 4607 (2004)CrossRefADSGoogle Scholar
  31. 31.
    M.Y. Efremov, E.A. Olson, M. Zhang, Z. Zhang, L.H. Allen, Phys. Rev. Lett. 91, 085703 (2003)CrossRefADSGoogle Scholar
  32. 32.
    H. Huth, A.A. Minakov, C. Schick, J. Polym. Sci. B Polym. Phys. 44, 2996 (2006)CrossRefADSGoogle Scholar
  33. 33.
    H. Huth, A.A. Minakov, A. Serghei, F. Kremer, C. Schick, Eur. Phys. J. Special Topics 141, 153 (2007)CrossRefGoogle Scholar
  34. 34.
    D.W. Denlinger, E.N. Abarra, K. Allen, P.W. Rooney, M.T. Messer, S.K. Watson, F. Hellman, Rev. Sci. Instrum. 65, 946 (1994)CrossRefADSGoogle Scholar
  35. 35.
    S.L. Lai, G. Ramanath, L.H. Allen, P. Infante, Z. Ma, Appl. Phys. Lett. 67, 1229 (1995)CrossRefADSGoogle Scholar
  36. 36.
    Y. Efremov, E.A.Z.M. Olson, S.L. Lai, F. Schiettekatte, Z.S. Zhang, L.H. Allen, Thermochim. Acta 412, 13 (2004)CrossRefGoogle Scholar
  37. 37.
    A.A. Minakov, C. Schick, Rev. Scient. Instr. 78, 073902 (2007)CrossRefADSGoogle Scholar
  38. 38.
    S.A. Adamovsky, A.A. Minakov, C. Schick, Thermochim. Acta 403, 55 (2003)CrossRefGoogle Scholar
  39. 39.
    A. Serghei, H. Huth, C. Schick, F. Kremer, Macromolecules 41, 3636 (2008)CrossRefADSGoogle Scholar
  40. 40.
    J.H. Kim, J. Jang, D.Y. Lee, W.C. Zin, Macromolecules 35, 311 (2002)CrossRefADSGoogle Scholar
  41. 41.
    D.B. Hall, P. Underhill, J.M. Torkelson, Polym. Eng. Sci. 38, 2039 (1998)CrossRefGoogle Scholar
  42. 42.
    G. Reiter, P.G. de Gennes, Eur. Phys. J. E 6, 25 (2001)CrossRefGoogle Scholar
  43. 43.
    Y. Kraftmakher, Phys. Reports 356, 1 (2002)CrossRefADSGoogle Scholar
  44. 44.
    S. Weyer, A. Hensel, C. Schick, Thermochim. Acta 305, 267 (1997)CrossRefGoogle Scholar
  45. 45.
    J.L. Keddie, R.A.L. Jones, R.A. Cory, Europhys. Lett. 27, 59 (1994)CrossRefADSGoogle Scholar
  46. 46.
    J.A. Forrest, K. Dalnoki-Veress, Adv. Coll. Interf. Sci. 94, 167 (2001)CrossRefGoogle Scholar
  47. 47.
    C.J. Ellison, J.M. Torkelson, Nat. Mater. 2, 695 (2003)CrossRefADSGoogle Scholar
  48. 48.
    G.B. McKenna, Eur. Phys. J. Special Topics 141, 291 (2007)CrossRefGoogle Scholar
  49. 49.
    D.S. Fryer, R.D. Peters, E.J. Kim, J.E. Tomaszewski, J.J. de Pablo, P.F. Nealey, C.C. White, W.l. Wu, Macromolecules 34, 5627 (2001)CrossRefADSGoogle Scholar
  50. 50.
    J.A. Forrest, K. Dalnokiveress, J.R. Stevens, J.R. Dutcher, Phys. Rev. Lett. 77, 2002 (1996)CrossRefADSGoogle Scholar
  51. 51.
    H. Fischer, Macromolecules 35, 3592 (2002)CrossRefADSGoogle Scholar
  52. 52.
    Z. Fakhraai, J.A. Forrest, Phys. Rev. Lett. 95, 025701 (2005)CrossRefADSGoogle Scholar
  53. 53.
    R. Weber, K.M. Zimmermann, M. Tolan, J. Stettner, W. Press, O.H. Seeck, J. Erichsen, V. Zaporojtchenko, T. Strunskus, F. Faupel, Phys. Rev. E 64, 061508 (2001)CrossRefADSGoogle Scholar
  54. 54.
    Y. Liu, T.P. Russell, M.G. Samant, J. Stohr, H.R. Brown, A. Cossyfavre, J. Diaz, Macromolecules 30, 7768 (1997)CrossRefADSGoogle Scholar
  55. 55.
    H. Kim, A. Ruehm, L.B. Lurio, J.K. Basu, J. Lal, D. Lumma, S.G. J. Mochrie, S.K. Sinha, Phys. Rev. Lett. 90, 068302 (2003)CrossRefADSGoogle Scholar
  56. 56.
    B. Wunderlich, Pure Appl. Chem. 67, 1019 (1995)CrossRefGoogle Scholar
  57. 57.
    L.J. An, D.Y. He, J.K. Jing, Z.G. Wang, D.H. Yu, B.Z. Jiang, Z.H. Jiang, R.T. Ma, Eur. Polym. J. 33, 1523 (1997)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2010

Authors and Affiliations

  1. 1.State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing UniversityNanjingChina
  2. 2.Institute of Physics, Rostock UniversityRostockGermany

Personalised recommendations