The European Physical Journal Special Topics

, Volume 187, Issue 1, pp 211–221 | Cite as

Theory for serial correlations of interevent intervals

  • T. Schwalger
  • B. Lindner


We consider stochastic systems with m internal states in which discrete events (e.g. hopping events between metastable states or firing events of neurons) occur at a state-dependent rate. Transitions between states are possible with certain fixed rates. Because the state immediately after an event depends in general on the history of the process, the intervals between two consecutive events (“residence times”) are correlated among each other, i.e. the residence time sequence constitutes a nonrenewal process. We construct a general kinetic scheme that accounts for the number of events at a given time. The count statistics is used to derive a general expression for the correlation coefficient of residence times with a certain lag. We apply the theoretical result to a simple neuron model with discrete threshold states leading to negative interspike interval correlations.


Metastable State European Physical Journal Special Topic Adaptation Variable Serial Correlation Spike Train 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Gammaitoni, F. Marchesoni, S. Santucci, Phys. Rev. Lett. 74, 1052 (1995)CrossRefADSGoogle Scholar
  2. 2.
    L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998)CrossRefADSGoogle Scholar
  3. 3.
    M.H. Choi, R.F. Fox, P. Jung, Phys. Rev. E 57, 6335 (1998)CrossRefADSGoogle Scholar
  4. 4.
    A. Neiman, A. Silchenko, V. Anishchenko, L. Schimansky-Geier, Phys. Rev. E 58, 7118 (1998)CrossRefADSGoogle Scholar
  5. 5.
    A. Pikovsky, J. Kurths, Phys. Rev. Lett. 78, 775 (1997)MATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    A. Longtin, Phys. Rev. E 55, 868 (1997)CrossRefADSGoogle Scholar
  7. 7.
    B. Lindner, L. Schimansky-Geier, Phys. Rev. E 60, 7270 (1999)CrossRefADSGoogle Scholar
  8. 8.
    B. Lindner, J. García-Ojalvo, A. Neiman, L. Schimansky-Geier, Phys. Rep. 392, 321 (2004)CrossRefADSGoogle Scholar
  9. 9.
    O.V. Ushakov, H.J. Wünsche, F. Henneberger, I.A. Khovanov, L. Schimansky-Geier, M.A. Zaks, Phys. Rev. Lett. 95, 123903 (2005)CrossRefADSGoogle Scholar
  10. 10.
    A. Neiman, L. Schimansky-Geier, A. Cornell-Bell, F. Moss, Phys. Rev. Lett. 83, 4896 (1999)CrossRefADSGoogle Scholar
  11. 11.
    J.A. Freund, A.B. Neiman, L. Schimansky-Geier, Europhys. Lett. 50, 8 (2000)CrossRefADSGoogle Scholar
  12. 12.
    R. Rozenfeld, J.A. Freund, A. Neiman, L. Schimansky-Geier, Phys. Rev. E 64, 051107 (2001)CrossRefADSGoogle Scholar
  13. 13.
    L. Callenbach, P. Hänggi, S.J. Linz, J.A. Freund, L. Schimansky-Geier, Phys. Rev. E 65, 051110 (2002)CrossRefADSGoogle Scholar
  14. 14.
    T. Prager, L. Schimansky-Geier, Phys. Rev. E (Statistical, Nonlinear, and Soft Matter Physics) 71, 031112 (2005)MathSciNetADSGoogle Scholar
  15. 15.
    D.R. Cox, Renewal Theory (Methuen, London, 1962)Google Scholar
  16. 16.
    S.B. Lowen, M.C. Teich, J. Acoust. Soc. Am. 92, 803 (1992)CrossRefADSGoogle Scholar
  17. 17.
    R. Ratnam, M.E. Nelson, J. Neurosci. 20, 6672 (2000)Google Scholar
  18. 18.
    M.J. Chacron, A. Longtin, M. St-Hilaire, L. Maler, Phys. Rev. Lett. 85, 1576 (2000)CrossRefADSGoogle Scholar
  19. 19.
    Y.H. Liu, X.J. Wang, J. Comp. Neurosci. 10, 25 (2001)CrossRefGoogle Scholar
  20. 20.
    B. Lindner, Phys. Rev. E 69, 022901 (2004)CrossRefADSGoogle Scholar
  21. 21.
    T.A. Engel, L. Schimansky-Geier, A. Herz, S. Schreiber, I. Erchova, J. Neurophysiol. 100, 1576 (2008)CrossRefGoogle Scholar
  22. 22.
    M.P. Nawrot, C. Boucsein, V. Rodriguez-Molina, A. Aertsen, S. Grun, S. Rotter, Neurocomp. 70, 1717 (2007)CrossRefGoogle Scholar
  23. 23.
    A. Neiman, D.F. Russell, Phys. Rev. Lett. 86, 3443 (2001)CrossRefADSGoogle Scholar
  24. 24.
    S. Bahar, J. Kantelhardt, A. Neiman, H. Rego, D. Russell, L. Wilkens, A. Bunde, F. Moss, Europhys. Lett. 56, 454 (2001)CrossRefADSGoogle Scholar
  25. 25.
    A. Neiman, D.F. Russell, Phys. Rev. E 71, 061915 (2005)CrossRefADSGoogle Scholar
  26. 26.
    T.A. Engel, B. Helbig, D.F. Russell, L. Schimansky-Geier, A. Neiman, Phys. Rev. E 80, 021919 (2009)CrossRefADSGoogle Scholar
  27. 27.
    J.W. Middleton, M.J. Chacron, B. Lindner, A. Longtin, Phys. Rev. E 68, 021920 (2003)CrossRefADSGoogle Scholar
  28. 28.
    T. Schwalger, L. Schimansky-Geier, Phys. Rev. E 77, 031914 (2008)CrossRefADSGoogle Scholar
  29. 29.
    J. Benda, A.V.M. Herz, Neural Comp. 15, 2523 (2003)MATHCrossRefGoogle Scholar
  30. 30.
    M.J. Chacron, K. Pakdaman, A. Longtin, Neural Comp. 15, 253 (2003)MATHCrossRefGoogle Scholar
  31. 31.
    M.J. Chacron, A. Longtin, L. Maler, J. Neurosci. 21, 5328 (2001)Google Scholar
  32. 32.
    M.J. Chacron, B. Lindner, A. Longtin, Phys. Rev. Lett. 92, 080601 (2004)CrossRefADSGoogle Scholar
  33. 33.
    B. Lindner, T. Schwalger, Phys. Rev. Lett. 98, 210603 (2007)CrossRefADSGoogle Scholar
  34. 34.
    T. Schwalger, B. Lindner, Phys. Rev. E 78, 021121 (2008)CrossRefADSGoogle Scholar
  35. 35.
    J.A. McFadden, J. Roy. Stat. Soc. B 24, 364 (1962)MathSciNetGoogle Scholar
  36. 36.
    X.J. Wang, J. Neurophysiol. 79, 1549 (1998)Google Scholar

Copyright information

© EDP Sciences and Springer 2010

Authors and Affiliations

  • T. Schwalger
    • 1
  • B. Lindner
    • 1
  1. 1.Max-Planck-Institute for the Physics of Complex SystemsDresdenGermany

Personalised recommendations