Advertisement

The European Physical Journal Special Topics

, Volume 178, Issue 1, pp 81–122 | Cite as

Physics of amorphous solids: Their creation and their mechanical properties

  • I. Procaccia
Article

Abstract

In this short review I summarize some progress achieved in my research group regarding the glass transition and the mechanical properties of the resulting amorphous solids. Our main concerns were on the one hand to understand the extreme slowing down over a narrow range of temperatures which results in a viscosity so high that the materials behave as solids under small mechanical strains. On the other hand we are interested in their mechanical yield to higher strains. After yielding the materials can be in an elasto-plastic steady state which we want to understand and characterize.

Keywords

European Physical Journal Special Topic Stress Drop Plastic Event Amorphous Solid Binary Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a general review cf. Ediger M.D., Angell C.A., Nagel S.R., J. Phys. Chem. 100, 13200 (1996)Google Scholar
  2. Eckmann J.-P., Procaccia I., Phys. Rev. E 78, 011503 (2008)Google Scholar
  3. Aharonov E., Bouchbinder E., Ilyin V., Makedonska N., Procaccia I., Schupper N., Europhys. Lett. 77, 56002 (2007)Google Scholar
  4. Hentschel H.G.E., Ilyin V., Makedonska N., Procaccia I., Schupper N., Phys. Rev. E 75, 050404 (2007)Google Scholar
  5. Ilyin V., Lerner E., Lo T.-S., Procaccia I., Phys. Rev. Lett. 99, 135702 (2007)Google Scholar
  6. Lerner E., Procaccia I., Phys. Rev. E 78, 020501 (2008)Google Scholar
  7. Lerner E., Procaccia I., Regev I., Phys. Rev. E 79, 031501 (2009)Google Scholar
  8. Lerner E., Procaccia I., Zylberg J., Phys. Rev. Lett. 102, 125701 (2009)Google Scholar
  9. Hentschel H.G.E., Ilyin V., Procaccia I., Phys. Rev. Lett. 101, 265701 (2008)Google Scholar
  10. Hentschel H.G.E., Ilyin V., Procaccia I., Schupper N., Phys. Rev. E 78, 061504 (2008)Google Scholar
  11. Boué L., Lerner E., Procaccia I., Zylberg J., "Predictive Statistical Mechanics for Glass Forming Systems", J. Stat. Mech. (2009)Google Scholar
  12. Kob W., Andersen H.C., Phys. Rev. E 51, 4626 (1993)Google Scholar
  13. Deng D., Argon A., Yip S., Philos. Trans. R. Soc. London, Ser. A 329, 549 (1989)Google Scholar
  14. Perera D.N., Harrowell P., Phys. Rev. E 59, 5721 (1999)Google Scholar
  15. Bailey N.P., Pedersen U.R., Gnan N., Schrøder T.B., Dyre J.C., J. Chem. Phys. 129, 184507 (2008)Google Scholar
  16. Allen M.P., Tildesley D.J., Computer Simultions of Liquids (Oxford University Press, 1991)Google Scholar
  17. Dzugutov M., Phys. Rev. A 40, 5434 (1989)Google Scholar
  18. Note that in [8] a smaller set of quasi-species was identified with Cliq. In the present treatment we include in this set all the quasi-species whose concentration goes down significantly in the relevant range of tempeartures, and as a result we find a much improved relation between the compositional and dynamical aspects as seen in Fig. 11Google Scholar
  19. F. Seitz, D. Turnbull (eds.), Solid State Physics, Vol. 18 (Academic Press, New York, 1966), p. 274; see also Vol. 19 (1966), p. 1Google Scholar
  20. Kobayashi S., Maeda K., Takeuchi S., Acta Metall. 28, 1641 (1980)Google Scholar
  21. Maeda K., Takeuchi S., Philos. Mag. A 44, 643 (1981)Google Scholar
  22. Argon A.S., Kuo H.Y., Mater. Sci. Eng. 39, 101 (1979)Google Scholar
  23. Argon A.S., Shi L.T., Philos. Mag. A 46, 275 (1982)Google Scholar
  24. Argon A.S., Acta Mstall. 27, 47 (1979)Google Scholar
  25. Falk M.L., Langer J.S., Phys. Rev. E 57, 7192 (1998)Google Scholar
  26. Manning M.L., Langer J.S., Carlson J.M., Phys. Rev. E 76, 056106 (2007)Google Scholar
  27. Bouchbinder E., Pomyalov A., Procaccia I., Phys. Rev. Lett. 97, 134301 (2006)Google Scholar
  28. Eastgate L.O., Langer J.S., Pechenik L., Phys. Rev. Lett. 90, 045506 (2003)Google Scholar
  29. Lo T.-S., Pomyalov A., Procaccia I., Zylberg J., Phys. Rev. E 78, 027101 (2008)Google Scholar
  30. Maloney C.E., Lemaître A., Phys. Rev. E 74, 016118 (2006)Google Scholar
  31. Langer J.S. (private communication)Google Scholar
  32. Bandi M. (private communication)Google Scholar
  33. http://www.inference.phy.cam.ac.uk/mackay/c/macopt.html. We have modified this code for our own use and defined the minimization of the energy until |∇U|2/N = 10−18 Google Scholar
  34. http://www.weizmann.ac.il/chemphys/cfprocac/Google Scholar
  35. Varnik F., Bocquet L., Barrat J.-L., J. Chem. Phys. 120, 2788 (2004)Google Scholar
  36. Tanguy A., Leonforte F., Barrat J.-L., Eur. Phys. J. E 20, 355 (2006)Google Scholar
  37. Twardos M., Dennin M., Phys. Rev. E 71, 061401 (2005)Google Scholar
  38. Bailey N.P., Schiøtz J., Lemaître A., Jacobsen K.W., Phys. Rev. Lett. 98, 095501 (2007)Google Scholar
  39. Maloney C., Lemaître A., Phys. Rev. Lett. 93, 016001 (2004)Google Scholar
  40. Demkowicz M.J., Argon A.S., Phys. Rev. Lett. 93, 025505 (2004)Google Scholar
  41. Bailey N.P., Schiøtz J., Lemaître A., Jacobsen K.W., Phys. Rev. Lett. 98, 095501 (2007)Google Scholar
  42. Increasing γ beyond this value causes competition with the elastic relaxation time and a disruption of the linear shear profileGoogle Scholar
  43. Lerner E., Procaccia I., Phys. Rev. E 79, 066109 (2009)Google Scholar
  44. Lemaître A., Caroli C., Phys. Rev. Lett. 103, 065501 (2009)Google Scholar
  45. Tsamados M., Tanguy A., Goldenberg C., Barrat J.-L., Phys. Rev. E 80, 026112 (2009)Google Scholar
  46. Hentschel H.G.E., Karmakar S., Lerner E., Procaccia I., Phys. Rev. Lett. (in press), also: [arXiv:0908.2167]Google Scholar
  47. Karmakar S., Lerner E., Procaccia I. [arXiv:0910.4281]Google Scholar
  48. Ilyin V., Makedonska N., Procaccia I., Schupper N., Phys. Rev. E 76, 052401 (2007)Google Scholar
  49. "Strain hardening" means an increase in local slope of σxy vs. γ and "strain sofening" means a decrease in local slope of σxy vs. γGoogle Scholar
  50. Bannantine J.A., Comer J.J., Handrock J.L., Fundamentals of Metal Fatigue Analysis (Prentice-Hall, 1990)Google Scholar
  51. Suresh S., Fatigue of Materials (Cambridge University Press, 1998)Google Scholar
  52. Bouchbinder E., langer J.S., Procaccia I., Phys. Rev. E 75, 036107 (2007)Google Scholar
  53. Bouchbinder E., langer J.S., Procaccia I., Phys. Rev. E 75, 036108 (2007)Google Scholar
  54. Rountree C.L., Vandembroucq D., Talamali M., Bouchaud E., Roux S., Phys. Rev. Lett. 102, 195501 (2009)Google Scholar
  55. Cohen M.H., Turnbull D., J. Chem. Phys. 31, 1164 (1959)Google Scholar
  56. Spaepen F., Acta Metall. 25, 407 (1977)Google Scholar
  57. Lerner E., Procaccia I., Ching E.S.C., Hentschel H.G.E., Phys. Rev. B 79, 180203(R) (2009)Google Scholar
  58. Lerner E., Procaccia I., Phys. Rev. E 80, 026128 (2009)Google Scholar
  59. Shintani H., Tanaka H., Nat. Phys. 2, 200 (2006)Google Scholar
  60. Boué L., Hentschel H.G.E., Procaccia I., Regev I., Zylberg J., Phys. Rev. B 81, 1R (2010)Google Scholar

Copyright information

© EDP Sciences and Springer 2009

Authors and Affiliations

  1. 1.Department of Chemical PhysicsThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations