The European Physical Journal Special Topics

, Volume 175, Issue 1, pp 175–180 | Cite as

(2γ,2e) total and differential cross-section calculations for helium with ħω = 40–50 eV

Article

Abstract

We consider two-photon double ionization of helium and analyse the electron dynamics in the region where the process is direct (39.49 eV < ħω < 54.42 eV). The fundamental process of two-photon double ionization (TPDI) is far from being well understood. In order to gain physical insight into the dynamics involved in TPDI, we investigate the electron energy distributions for ħω = 46 eV and ħω = 50 eV, angular distributions are also analysed. The theoretical approach is based on the resolution of the time-dependent Schrödinger equation (TDSE), using a spectral approach. At the end of the pulse the TPDI probability is extracted from the total wavefunction using two different approaches. The first one neglects the electron interaction in the double continuum while the second one includes electron correlation effects. At ħω ≈ 45 eV the electrons are preferably emitted back-to-back with equal energy. At ħω = 50 eV the excess energy is likely to be transfered to one of the electron, while the electrons are emitted in opposite or same directions.

Keywords

Angular Distribution European Physical Journal Special Topic Double Ionization Ejection Angle Include Electron Correlation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.A. Horner, F. Morales, T.N. Rescigno, F. Martín, C.W. McCurdy, Phys. Rev. A 76, 030701 (2007)Google Scholar
  2. A.A. Sorokin, M. Wellhöfer, S.V. Bobashev, K. Tiedtke, M. Richter, Phys. Rev. A 75, 051402 (2007)Google Scholar
  3. H. Hasegawa, E.J. Takahashi, Y. Nabekawa, K.L. Ishikawa, K. Midorikawa, Phys. Rev. A 71, 023407 (2005)Google Scholar
  4. E. Foumouo, Ph. Antoine, H. Bachau, B. Piraux, New J. Phys. 10, 025017 (2008)Google Scholar
  5. B. Piraux, J. Bauer, S. Laulan, H. Bachau, Eur. Phys. J. D 26, 7 (2003)Google Scholar
  6. S. Laulan, H. Bachau, Phys. Rev. A 68, 013409 (2003)Google Scholar
  7. E. Foumouo, G. Lagmago Kamta, G. Edah, B. Piraux, Phys. Rev. A 74, 063409 (2006)Google Scholar
  8. E.J. Heller, H.A. Yamani, Phys. Rev. A 9, 1201 (1974)Google Scholar
  9. L.D. Landau, E. Lifhitz, Quantum Mechanics (Pergamon, New-York, 1965)Google Scholar
  10. I.A. Ivanov, A.S. Kheifets, Phys. Rev. A 75, 033411 (2007)Google Scholar
  11. L.A.A. Nikolopoulos, P. Lambropoulos, J. Phys. B 40, 1347 (2007)Google Scholar
  12. L.A.A. Nikolopoulos, P. Lambropoulos, J. Phys. B 34, 545 (2001)Google Scholar
  13. L. Feng, H.W. van der Hart, J. Phys. B 36, L1 (2003)Google Scholar
  14. S.X. Hu, J. Colgan, L.A. Collins, J. Phys. B 38, L35 (2005)Google Scholar
  15. R. Moshammer, et al., Phys. Rev. Lett. 98, 203001 (2007)Google Scholar
  16. E. Foumouo, Ph. Antoine, B. Piraux, L. Malegat, H. Bachau, R. Shakeshaft, J. Phys. B 41, 051001 (2008)Google Scholar

Copyright information

© EDP Sciences and Springer 2009

Authors and Affiliations

  1. 1.Laboratoire de Physique Atomique, Moléculaire et Optique, Unité PAMO, Université Catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Centre des Lasers Intenses et Applications, Université de Bordeaux I-CNRS-CEATalence CedexFrance

Personalised recommendations