The European Physical Journal Special Topics

, Volume 175, Issue 1, pp 147–152 | Cite as

High-intensity lasers as radiation sources

An overview of laser-induced nuclear reactions and applications
Article

Abstract

In the last decade or so, an evolution in experimental relativistic laser-plasma physics has led to highly sophisticated lasers which are now capable of generating ultra-short pulses and can be focused to intensities in excess of 1021 W cm-2. The laser interaction with solid or gas targets can generate collimated beams of highly energetic electrons, protons and ions. These high-intensity laser systems, therefore, turn out to be versatile and powerful sources of radiation and high-energy particles, without recourse to large-scale facilities such as nuclear reactors or particle accelerators. The potential to induce various kinds of nuclear reactions with laser-induced radiation fields has been demonstrated at several laboratories in recent years. The present paper lays out a comprehensive overview of nuclear reactions induced by high-intensity laser matter interactions. Mechanisms for electron, proton and ion acceleration, in addition to secondary bremsstrahlung, positron and neutron production, are addressed, with a focus on the types of nuclear reactions that are possible and potential applications. Discussion of the extrapolation of these processes and applications to the next generation of table-top lasers under construction is also presented.

Keywords

Nuclear Reaction European Physical Journal Special Topic Neutron Source Neutron Production Pulse Neutron Source 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.J. Feldman, R.Y. Chiao, Phys. Rev. A 4, 352 (1971)Google Scholar
  2. C.K. Rhodes, Science 264, 1345 (1985)Google Scholar
  3. J.E. Lynn, Nature 333, 116 (1988)Google Scholar
  4. K. Boyer, et al., Phys. Rev. Lett. 60, 557 (1988)Google Scholar
  5. K.W.D. Ledingham, et al., Phys. Rev. Lett. 84, 899 (2000)Google Scholar
  6. T.E. Cowan, et al., Phys. Rev. Lett. 84, 903 (2000)Google Scholar
  7. D. Umstadter, Nature 404, 239 (2000)Google Scholar
  8. H. Schwoerer, et al., Europhys. Lett. 61, 47 (2003)Google Scholar
  9. G. Malka, et al., Phys. Rev. E 66, 66402 (2002)Google Scholar
  10. J. Magill, et al., Appl. Phys. B 77, 387 (2003)Google Scholar
  11. K.W.D. Ledingham, et al., J. Phys. D 36, L79 (2003)Google Scholar
  12. F. Ewald, et al., Plasma Phys. Control. Fusion 45, 1 (2003)Google Scholar
  13. A. Modena, et al., Nature 377, 606 (1995)Google Scholar
  14. V. Malka, et al., Science 298, 1596 (2002)Google Scholar
  15. Z. Najmudin, et al., Phys. Plasma 10, 2071 (2003)Google Scholar
  16. J. Faure, et al., Nature 431, 541 (2004)Google Scholar
  17. S.P.D. Mangles, et al., Nature 431, 535 (2004)Google Scholar
  18. J. Galy, et al., New J. Phys. 9, 23 (2007)Google Scholar
  19. T.E. Cowan, et al., Nucl. Instr. Meth. Phys. Res. A 455, 130 (2000)Google Scholar
  20. R.A. Snavely, et al., Phys. Rev. Lett. 85, 2945 (2000)Google Scholar
  21. A.P.L. Robinson, et al., Phys. Rev. Lett. 96, 35005 (2006)Google Scholar
  22. P. McKenna, et al., Phys. Rev. Lett. 94, 1 (2005)Google Scholar
  23. L. Robson, et al., Lect. Notes Phys. 694, 191 (2006)Google Scholar
  24. P. McKenna, et al., Phys. Rev. Lett. 91, 075006 (2003)Google Scholar
  25. E.L. Clark, et al., Phys. Rev. Lett. 85, 1654 (2000)Google Scholar
  26. M. Hegelich, et al., Phys. Rev. Lett. 89, 085002 (2002)Google Scholar
  27. M. Zepf, et al., Phys. Rev. Lett. 90, 064801 (2003)Google Scholar
  28. T. Zagar, et al., New J. Phys. 7, 1 (2005)Google Scholar
  29. J. Yang, et al., J. Appl. Phys. 96, 6912 (2004)Google Scholar
  30. K.L. Lancaster, et al., Phys. Plasmas 11, 3404 (2004)Google Scholar

Copyright information

© EDP Sciences and Springer 2009

Authors and Affiliations

  1. 1.EC-JRC Institute for Transuranium ElementsKarlsruheGermany
  2. 2.Department of Physics and AstronomyUniversity of GlasgowGlasgowUK

Personalised recommendations