Advertisement

The European Physical Journal Special Topics

, Volume 174, Issue 1, pp 237–255 | Cite as

Atmospheric teleconnections and flow regimes under future climate projections

  • D. Handorf
  • K. Dethloff
Article

Abstract

This paper presents an analysis of the low-frequency variability of the midtropospheric atmospheric flow of the Northern Hemisphere during winter in terms of teleconnection patterns and atmospheric flow regimes. Teleconnection patterns have been determined by two different methods, correlation analysis and empirical orthogonal function analysis. Flow regimes have been determined by analysing the structure of a spherical probability density function in a low-dimensional state space spanned by the three leading empirical orthogonal functions. To assess the ability of state-of-the-art coupled atmosphere-ocean general circulation models (AOGCMs), multi-model simulations for present day conditions, performed for the 4th assessment report of the Intergovernmental Panel on Climate Change have been analysed. The comparison with observations reveals, that state-of-the-art AOGCMs are able to describe the low-frequency variability in terms of teleconnections and flow regimes realistically. The analyses of simulations for future climate scenarios reveal changes in the strengths of the centers of action. Concerning climate regimes, two new regimes appear and additionally, slight changes were found in the structure of some regimes.

Keywords

European Physical Journal Special Topic Empirical Orthogonal Function Teleconnection Pattern Empirical Orthogonal Function Analysis East Atlantic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.M. Wallace, D.S. Gutzler, Mon. Wea. Rev. 109, 784 (1981)Google Scholar
  2. G.T. Walker, E.W. Bliss, Mem. R. Meteor. Soc. 4, 53 (1932)Google Scholar
  3. A.G. Barnston, R.E. Livezey, Mon. Wea. Rev. 115, 1083 (1987)Google Scholar
  4. T. Woolings, B. Hoskins, M. Blackburn, P. Berrisford, J. Atmos. Sci. 65, 609 (2008)Google Scholar
  5. J.W. Hurrell, Geophys. Res. Lett. 23, 665 (1996)Google Scholar
  6. J.W. Hurrell, Y. Kushnir, G. Ottersen, M. Visbeck, in The North Atlantic Oscillation: Climatic Significance and Environmental Impact, edited by J.W. Hurrell, Y. Kushnir, G. Ottersen, M. Visbeck (Geophys. Monogr. 134, Washington, D.C., 2003), p. 279Google Scholar
  7. R. Glowienka-Hense, Tellus A 42, 497 (1990)Google Scholar
  8. R. Huth, J. Clim. 10, 1545 (1997)Google Scholar
  9. A.C. Renshaw, D.P. Rowell, C.K. Folland, J. Clim. 11, 1073 (1998)Google Scholar
  10. D.B. Stephenson, V. Pavan, Clim. Dyn. 20, 381 (2003)Google Scholar
  11. S.I. Kuzima, L. Bengtsson, O.M. Johannessen, H. Drange, L.P. Bobylev, M.W. Miles, Geophys. Res. Lett. 32, L04703 (2005)Google Scholar
  12. D.B. Stephenson, V. Pavan, M. Collins, M.M. Junge, R. Quadrelli and Participating CMIP2 Modelling Groups, Clim. Dyn. 27, 401 (2006)Google Scholar
  13. C.G. Rossby, J. Mar. Res. 2, 38 (1939)Google Scholar
  14. S. Corti, F. Molteni, T.N. Palmer, Nature 389, 799 (1999)Google Scholar
  15. D.B. Stephenson, A. Hannachi, A. O’Neill, Quart. J. Roy. Meteor. Soc. 130, 583 (2004)Google Scholar
  16. J.G. Charney, J.G.A. DeVore, J. Atmos. Sci. 36, 1205 (1979)Google Scholar
  17. B. Legras, M. Ghil, J. Atmos. Sci. 42, 433 (1985)Google Scholar
  18. D. Crommelin, J. Atmos. Sci. 60, 229 (2003)Google Scholar
  19. B.B. Reinhold, R.T. Pierrehumbert, Mon. Wea. Rev. 110, 1105 (1982)Google Scholar
  20. U. Achatz, J.D. Opsteegh, J. Atmos. Sci. 60, 478 (2003)Google Scholar
  21. M. Sempf, K. Dethloff, D. Handorf, M.V. Kurgansky, J. Atmos. Sci. 64, 2029 (2007)Google Scholar
  22. H. Itoh, M. Kimoto, J. Atmos. Sci. 53, 2217 (1996)Google Scholar
  23. H. Itoh, M. Kimoto, Physica D 109, 274 (1997)Google Scholar
  24. T.N. Palmer, Bull. Amer. Meteor. Soc. 74, 49 (1993)Google Scholar
  25. T.N. Palmer, J. Clim. 12, 575 (1993)Google Scholar
  26. D. Straus, F. Molteni, J. Clim. 17, 1641 (2004)Google Scholar
  27. M. Kageyama, F. D’Andrea, G. Ramstein, P.J. Valdes, R. Vautard, Clim. Dyn. 15, 2773 (1999)Google Scholar
  28. D. Handorf, K. Dethloff, A.G. Marshall, A. Lynch, J. Clim. 22, 58 (2009)Google Scholar
  29. G.A. Meehl, C. Covey, T. Delworth, M. Latif, B. McAvaney, J.F.B. Mitchell, R.J. Stouffer, K.E. Taylor, Bull. Amer. Meteor. Soc. 88, 1383 (2007)Google Scholar
  30. W.D. Collins, C.M. Bitz, M.L. Blackmon, G.B. Bonan, C.S. Bretherton, J.A. Carton, P. Chang, S.C. Doney, J.J. Hack, T.B. Henderson, J.T. Kiehl, W.G. Large, D.S. McKenna, B.D. Santer, R.D. Smith, J. Clim. 19, 2122 (2006)Google Scholar
  31. G.M. Flato, G.J. Boer, Geophys. Res. Lett. 28, 195 (2001)Google Scholar
  32. N.A. McFarlane, J.F. Scinocca, M. Lazare, R. Harvey, D. Verseghy, J. Li, The CCCma third generation atmospheric general circulation model (CCCma Internal Rep., Victoria, 2005), p. 25Google Scholar
  33. J.F. Scinocca, N.A. McFarlane, M. Lazare, J. Li, D. Plummer, Atmos. Chem. Phys. 8, 7883 (2008)Google Scholar
  34. E. Roeckner, G. Bäuml, L. Bonaventura, R. Brokopf, M. Esch, M. Giorgetta, S. Hagemann, I. Kirchner, L. Kornblueh, E. Manzini, A. Rhodin, U. Schlese, U. Schulzweida, A. Tompkins, The atmospheric general circulation model ECHAM 5. PART I: model description (Max-Plank Institute Meteorol., Rep 349, Hamburg, 2003), p. 127Google Scholar
  35. J.H. Jungclaus, M. Botzet, H. Haak, N. Keenlyside, J.J. Luo, M. Latif, J. Marotzke, U. Mikolajewicz, E. Roeckner, J. Clim. 19, 3952 (2005)Google Scholar
  36. V. Pope, M.L. Gallani, P.R. Rowntree, R.A. Stratton, Clim. Dyn. 16, 123 (2000)Google Scholar
  37. C. Gordon, C. Cooper, C.A. Senior, H.T. Banks, J.M. Gregory, T.C. Johns, J.F.B. Mitchell, R.A. Wood, Clim. Dyn. 16, 147 (2000)Google Scholar
  38. E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K.C. Mo, C. Ropelewski, J. Wang, A. Leetmaa, R. Reynolds, R. Jenne, D. Joseph, Bull. Amer. Meteor. Soc. 77, 437 (1996)Google Scholar
  39. R. Preisendorfer, Principal Component Analysis in Meteorology and Oceanography (Developments in Atmos. Sci., Vol. 17, Elsevier, Amsterdam, 1988), p. 425Google Scholar
  40. H. von Storch, F.W. Zwiers, Statistical Analysis in Climate Research (Cambridge University Press, Cambridge, UK, 1999), p. 484Google Scholar
  41. M.B. Richman, J. Climatol. 6, 293 (1986)Google Scholar
  42. R. Huth, Tellus A 58, 121 (2006)Google Scholar
  43. T.P. Barnett, J. Clim. 12, 511 (1999)Google Scholar
  44. M. Kimoto, M. Ghil, J. Atmos. Sci. 50, 2625 (1993)Google Scholar
  45. C.J. Hsu, F. Zwiers, J. Geophys. Res. 106, 20145 (2001)Google Scholar
  46. X. Cheng, J.M. Wallace, J. Atmos. Sci. 50, 2674 (1993)Google Scholar
  47. K.C. Mo, M. Ghil, J. Geophys. Res. 93, 10927 (1988)Google Scholar
  48. P. Smyth, K. Ide, M. Ghil, J. Atmos. Sci. 56, 3704 (1999)Google Scholar
  49. A.H. Monahan, L. Pandolfo, J.C. Fyfe, Geophys. Res. Lett. 28, 1019 (2001)Google Scholar
  50. B. Christiansen, J. Clim. 20, 2229 (2007)Google Scholar
  51. B. Christiansen, J. Clim. 18, 4814 (2005)Google Scholar
  52. A.H. Monahan, J.C. Fyfe, J. Clim. 20, 375 (2007)Google Scholar
  53. D. Crommelin, J. Atmos. Sci. 61, 2384 (2004)Google Scholar
  54. B.W. Silverman, Density Estimation for Statistics and Data Analysis (Chapman & Hall, New York, USA, 1986), p. 176Google Scholar
  55. T. Schneider, A. Neumaier, ACM Transact. Math. Software 1, 58 (2001)Google Scholar
  56. K.E. Taylor, J. Geophys. Res. 106, 7183 (2001)Google Scholar
  57. D.W.T. Thompson, J.M. Wallace, Geophys. Res. Lett. 25, 1297 (1998)Google Scholar
  58. J.M. Wallace, Y. Zhang, L. Bajuk, J. Clim. 9, 249 (1996)Google Scholar
  59. S.P.E. Keeley, M. Collins, A.J. Thorpe, Clim. Dyn. 31, 195 (2008)Google Scholar
  60. A.H. Monahan, J.C. Fyfe, G.M. Flato, Geophys. Res. Lett. 27, 1139 (2000)Google Scholar
  61. Q. Teng, J.C. Fyfe, A.H. Monahan, Clim. Dyn. 28, 867 (2007)Google Scholar
  62. K. Dethloff, A. Rinke, E. Sokolova, S.K. Saha, D. Handorf, W. Dorn, A. Benkel, B. Rockel, H. von Storch, M. Køltzow, J.E. Haugen, L.P. Røed, E. Roeckner, J.H. Christensen, M. Stendel, Geophys. Res. Lett. 33, L03703 (2006)Google Scholar
  63. R. Joseph, M. Ting, P.J. Kushner, J. Clim. 17, 540 (2004)Google Scholar
  64. W.A. Müller, E. Roeckner, Geophys. Res. Lett. 33, L05711 (2006)Google Scholar
  65. H. Lin, J. Derome, R.J. Greatbatch, K.A. Peterson, J. Lu, Geophys. Res. Lett. 29, 1943 (2002)Google Scholar
  66. M.P. Hoerling, A. Kumar, J. Clim. 15, 2184 (2002)Google Scholar
  67. S. Brand, K. Dethloff, D. Handorf, Geophys. Res. Lett. 35, L05809 (2008)Google Scholar

Copyright information

© EDP Sciences and Springer 2009

Authors and Affiliations

  1. 1.Research Department PotsdamAlfred Wegener Institute for Polar and Marine ResearchPotsdamGermany

Personalised recommendations