Advertisement

The effect of long-range dependence on modelling extremes with the generalised extreme value distribution

Article

Abstract

Two effects arise for the modelling of block maxima from dependent time series: a reduced rate of convergence for the block maxima probability distribution towards the generalised extreme value distribution, and an increase in uncertainty of the parameter estimates compared to independent or short range dependent records. These effects are exemplified with a simulation study using a white noise, a short-range and a long-range dependent process. The two issues raised turned out to be relatively unproblematic for short-range dependent processes. For long-range dependent processes, especially the increased parameter uncertainty poses a problem. Incautious use of standard procedures would lead to a severe underestimation of the parameter uncertainty which implies a misconception of accuracy for derived quantities, such as return levels which are frequently used for risk assessment and dimensioning of hydraulic structures.

Keywords

Block Size European Physical Journal Special Topic Probability Distribution Function Generalise Extreme Value Return Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Hallegatte, J. Appl. Meteorol. Climatol. 46, 1956 (2007)Google Scholar
  2. Munich Re Group, Tech. Rep., Munich Re Group (2009)Google Scholar
  3. J. Beirlant, Y. Goegebeur, H. Segers, J. Teugels, Statistics of Extremes: Theory and Applications (Wiley, 2004)Google Scholar
  4. S.G. Coles, An Introduction to Statistical Modelling of Extreme Values (Springer, London, 2001)Google Scholar
  5. P. Embrechts, C. Klüppelberger, T. Mikosch, Modelling Extremal Events for Insurance and Finance (Springer, Berlin, 1997)Google Scholar
  6. J. Beran, Statistics for Long-Memory Processes (Chapman & Hall, 1994)Google Scholar
  7. P.M. Robinson (ed.), Time Series with Long Memory (Oxford University Press, 2003)Google Scholar
  8. T.A. Cohn, H.F. Lins, Geophys. Res. Lett. 32, L23402 (2005)Google Scholar
  9. K. Fraedrich, R. Blender, Phys. Rev. Lett. 90, 108501 (2003)Google Scholar
  10. R.L. Smith, Long-range Dependence and Global Warming, edited by V. Barnett, P. Turkman, Statistics for the Environment (John Wiley and Sons Ltd., 1993), pp. 141–161Google Scholar
  11. D.I. Vyushin, V.E. Fioletov, T.G. Shepherd, J. Geophys. Res. 112, D14307 (2007)Google Scholar
  12. A. Montanari, R. Rosso, M.S. Taqqu, Water Resour. Res. 36, 1249 (2000)Google Scholar
  13. M. Mudelsee, Water Resour. Res. 43, W01202 (2007)Google Scholar
  14. M. Santhanam, H. Kantz, Physica A 345, 713 (2005)Google Scholar
  15. A. Bunde, J.F. Eichner, S. Havlin, J.W. Kantelhart, Physica A 330, 1 (2003)Google Scholar
  16. E.G. Altmann, H. Kantz, Phys. Rev. E 71, 056106 (2005)Google Scholar
  17. R.A. Fisher, L.H.C. Tippett, Proc. Cambridge Phil. Soc. 24, 180 (1928)Google Scholar
  18. R.W. Katz, M.B. Parlange, C. Tebaldi, Clim. Change 60, 189 (2003)Google Scholar
  19. D. Maraun, H.W. Rust, T.J. Osborn, Int. J. Climatol, doi: 10.1002/joc.1811 (2009) (in press)Google Scholar
  20. H.W. Rust, D. Maraun, T.J. Osborn, Eur. Phys. J. Special Topics 174, 99 (2009)Google Scholar
  21. J.R.M. Hosking, J.R. Wallis, E.F. Wood, Technometrics 27, 251 (1985)Google Scholar
  22. R.L. Smith, Biometrika 72, 67 (1985)Google Scholar
  23. H.W. Rust, O. Mestre, V.K.C. Venema, J. Geophys. Res. 113, D19110 (2008)Google Scholar
  24. M.R. Leadbetter, G. Lindgren, H. Rootzén, Extremes and Related Properties of Random Sequences and Processes (Springer, New York, 1983)Google Scholar
  25. P.J. Brockwell, R.A. Davis, Time Series: Theory and Methods (Springer, Berlin, 1991)Google Scholar
  26. A. Montanari, R. Rosso, M.S. Taqqu, Water Resour. Res. 33, 1035 (1997)Google Scholar
  27. A.C. Davison, D.B. Hinkley, Bootstrap Methods and their Application (Cambridge University Press, Cambridge, 1997)Google Scholar
  28. H.W. Rust, M. Kallache, H.-J. Schellnhuber, J. Kropp, Confidence Intervals for Flood Return Level Estimates using a Bootstrap Approach, J. Kropp, H.-J. Schellnhuber, In Extremis (Springer, Berlin, forthcoming)Google Scholar
  29. M. Kallache, H.W. Rust, J. Kropp, Nonlin. Proc. Geophys. 2, 201 (2005)Google Scholar
  30. D. Maraun, H.W. Rust, J. Timmer, Nonlin. Proc. Geophys. 11, 495 (2004)Google Scholar
  31. R Development Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2004)Google Scholar

Copyright information

© EDP Sciences and Springer 2009

Authors and Affiliations

  1. 1.Laboratoire des Sciences du Climat et de l’Environnement (LSCE-IPSL)Gif-sur-YvetteFrance

Personalised recommendations