Advertisement

Optical solitons in 1+2 dimensions with non-Kerr law nonlinearity

  • A. Biswas
  • D. Milovic
Regular Article

Abstract

This paper integrates the nonlinear Schrödinger’s equation in 1+2 dimensions with power and dual-power law nonlinearity. An exact 1-soliton solution is obtained in closed form using the solitary wave ansatze for these two laws. The special cases of Kerr law and parabolic law naturally fall out of these two laws.

Keywords

Soliton European Physical Journal Special Topic Nonlinear Evolution Equation Optical Soliton Inverse Scattering Transform 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Asif, S. Shwetanshumala, S. Konar, Phys. Lett. A 372, 735 (2008)Google Scholar
  2. M. Ballav, B. Mondal, A. Roy Chowdhury, Commun. Nonlin. Sci. Numer. Simul. 12, 1242 (2007)Google Scholar
  3. A. Biswas, S. Konar, Introduction to non-Kerr law optical solitons (CRC Press, Boca Raton, FL, USA, 2006)Google Scholar
  4. A. Biswas, K. Porsezian, Commun. Nonlin. Sci. Numer. Simul. 12, 886 (2007)Google Scholar
  5. V.S. Busalev, V.E. Grikurov, Math. Comp. Simul. 56, 539 (2001)Google Scholar
  6. C. Dai, J. Zhang, Opt. Commun. 263, 309 (2006)Google Scholar
  7. S.I. Fewo, T.C. Kofane, Opt. Commun. 282, 2893 (2008)Google Scholar
  8. R. Hao, L. Li, Z. Li, R. Yang, G. Zhou, Opt. Commun. 245, 383 (2005)Google Scholar
  9. S. Jana, S. Konar, Phys. Lett. A 362, 435 (2007)Google Scholar
  10. Z. Jovanoski, D.R. Rowland, J. Modern Opt. 48, 1179 (2001)Google Scholar
  11. R. Kohl, A. Biswas, D. Milovic, E. Zerrad, Opt. Laser Technol. 40, 647 (2008)Google Scholar
  12. S. Konar, S. Jana, M. Mishra, Opt. Commun. 255, 114 (2005)Google Scholar
  13. S. Konar, M. Mishra, S. Jana, Phys. Lett. A 362, 505 (2007)Google Scholar
  14. C. Lin, X.-R. Hong, F.-Q. Dou, Commun. Nonlin. Sci. Numer. Simul. 13, 567 (2008)Google Scholar
  15. A. Panajotovic, D. Milovic, A. Biswas, E. Zerrad, Res. Lett. Opt. 2008, 613986 (2008)Google Scholar
  16. S. Shwetanshumala, Prog. Electromagn. Res. Lett. 3, 17 (2008)Google Scholar
  17. S. Shwetanshumala, S. Konar, A. Biswas, Optik 119, 403 (2008)Google Scholar
  18. D. Turaev, M. Radziunas, A.G. Vladimirov, Phys. Rev. E 77, 065201 (R) (2008)Google Scholar
  19. J. Yang, D.J. Kaup, SIAM J. Appl. Math. 60, 967 (2000)Google Scholar
  20. P.E. Zhidkov, Korteweg-de Vries, Nonlinear Schrödinger’s Equations: Qualitative Theory (Springer Verlag, New York, 2001)Google Scholar

Copyright information

© EDP Sciences and Springer 2009

Authors and Affiliations

  • A. Biswas
    • 1
  • D. Milovic
    • 2
  1. 1.Center for Research and Education in Optical Sciences and Applications, Department of Applied Mathematics and Theoretical PhysicsDelaware State UniversityDoverUSA
  2. 2.Faculty of Electronic Engineering, Department of TelecommunicationsUniversity of NisNisSerbia

Personalised recommendations