Femtosecond optical frequency combs

  • Th. Udem
  • R. Holzwarth
  • Th. Hänsch
Open Access


A laser frequency comb allows the conversion of the very rapid oscillations of visible light of some 100’s of THz down to frequencies that can be handled with conventional electronics. This capability has enabled the most precise laser spectroscopy experiments yet that allowed to test quantum electrodynamics, to determine fundamental constants and to search for possible slow changes of these constants. Using an optical frequency reference in combination with a laser frequency comb has made it possible to construct all optical atomic clocks, that are now outperforming even the best cesium atomic clocks. In future direct frequency comb spectroscopy might enable high resolution laser spectroscopy in the extreme ultraviolet for the first time. Frequency combs are also used to calibrate astronomical spectrographs and might reach an accuracy that is sufficient to observe the expansion of the universe in real time.


European Physical Journal Special Topic Optical Frequency Fundamental Constant Frequency Comb Atomic Clock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. L.O. Hocker, A. Javan, D.R. Rao, L. Frenkel, Appl. Phys. Lett. 10, 147 (1967)Google Scholar
  2. K.M. Evenson, J.S. Wells, F.R. Petersen, B.L. Danielson, G.W. Day, Appl. Phys. Lett. 22, 192 (1973)Google Scholar
  3. See for example: F.M. Gardener, Phaselock Techniques (John Wiley & Sons, New York, 1979)Google Scholar
  4. H. Schnatz, B. Lipphardt, J. Helmcke, F. Riehle, G. Zinner, Phys. Rev. Lett. 76, 18 (1996)Google Scholar
  5. Th. Udem, J. Reichert, R. Holzwarth, T.W. Hänsch, Opt. Lett. 24, 881 (1999)Google Scholar
  6. Th. Udem, Thesis, Ludwig-Maximilians Universität, Munich, Germany (1997)Google Scholar
  7. J. Reichert, R. Holzwarth, Th. Udem, T.W. Hänsch, Opt. Commun. 172, 59 (1999)Google Scholar
  8. Th. Udem, R. Holzwarth, T.W. Hänsch, Nature 416, 233 (2002)Google Scholar
  9. P.St.J. Russell, Science 299, 358 (2003)Google Scholar
  10. R. Ell, et al., Opt. Lett. 26, 373 (2001)Google Scholar
  11. L. Matos, et al., Opt. Lett. 29, 1683 (2004)Google Scholar
  12. Th. Udem, J. Reichert, R. Holzwarth, T.W. Hänsch, Proceedings of the 1999 Joint Meeting of the European Frequency and Time Forum (EFTF99) and the IEEE International Frequency Control Symposium (FCS99), Vol. 2 (1999) pp. 620–625Google Scholar
  13. S.A. Diddams, et al., Phys. Rev. Lett. 84, 5102 (2000)Google Scholar
  14. M. Niering, et al., Phys. Rev. Lett. 84, 5496 (2000)Google Scholar
  15. R. Holzwarth, et al., Phys. Rev. Lett. 85, 2264 (2000)Google Scholar
  16. R. Holzwarth, et al., Appl. Phys. B 73, 269 (2001)Google Scholar
  17. H.A. Haus, E.P. Ippen, Opt. Lett. 26, 1654 (2001)Google Scholar
  18. N. Haverkamp, H. Hundertmark, C. Fallnich, H.R. Telle, Appl. Phys, B 78, 321 (2004)Google Scholar
  19. D.R. Walker, Th. Udem, Ch. Gohle, B. Stein, T.W. Hänsch, Appl. Phys. B 89, 535 (2007)Google Scholar
  20. S.A. Diddams, L. Hollberg, L.S. Ma, L. Robertsson, Opt. Lett. 27, 58 (2002)Google Scholar
  21. Th. Udem, F. Riehle, Rev. Nuovo Cimento 30, 563 (2007)Google Scholar
  22. S.A. Diddams, et al., Science 293, 825 (2001)Google Scholar
  23. P. Gill, H. Margolis, Phys. World, 35 (2005)Google Scholar
  24. S.A. Diddams, J.C. Bergquist, S.R. Jefferts, C.W. Oates, Science 306, 1318 (2004)Google Scholar
  25. L. Hollberg, et al., IEEE J. Quant. Electr. 37, 1502 (2001)Google Scholar
  26. T. Rosenband, et al., Science 319, 1808 (2008)Google Scholar
  27. B. de Beauvoir, et al., Eur. Phys. Lett. D 12, 61 (2000)Google Scholar
  28. G. Santarelli, et al., Phys. Rev. Lett. 82, 4619 (1999)Google Scholar
  29. M. Fischer, et al., Phys. Rev. Lett. 92, 230802 (2004)Google Scholar
  30. P.A.M. Dirac, Nature (London) 139, 323 (1937)Google Scholar
  31. S. Bize, et al., Phys. Rev. Lett. 90, 150802 (2003)Google Scholar
  32. E. Peik, et al., Phys. Rev. Lett. 93, 170801 (2004)Google Scholar
  33. M. Zimmermann, et al., Laser Phys. 15, 997 (2005)Google Scholar
  34. J.K. Webb, et al., Phys. Rev. Lett. 87, 091301 (2001)Google Scholar
  35. R. Srianand, et al., Phys. Rev. Lett. 92, 121302 (2004)Google Scholar
  36. M.T. Murphy, et al., [arXiv:astro-ph/0612407v1] and [arXiv:astro-ph/0611080v3]Google Scholar
  37. Y. Fujii, et al., Nucl. Phys. B 573, 377 (2000)Google Scholar
  38. S.K. Lamoreaux, J.R. Torgerson, Phys. Rev. D 69, 121701(R) (2004)Google Scholar
  39. T. Fortier, et al., Phys. Rev. Lett. 98, 070801 (2007)Google Scholar
  40. For a review of the subject see for example: J.G. Eden, Prog. Quant. Electron. 28, 197 (2004)Google Scholar
  41. J. Seres, Nature 433, 596 (2005)Google Scholar
  42. P. Fendel, S.D. Bergeson, Th. Udem, T.W. Hänsch, Opt. Lett. 32, 791 (2007)Google Scholar
  43. M. Bellini, T.W. Hänsch, Appl. Phys. B 65, 677 (1997)Google Scholar
  44. Ye.F. Baklanov, V.P. Chebotayev, Appl. Phys. Lett. 12, 97 (1977)Google Scholar
  45. C. Gohle, et al., Nature 436, 234 (2005)Google Scholar
  46. R.J. Jones, K.D. Moll, M.J. Thorpe, J. Ye, Phys. Rev. Lett. 94, 193201 (2005)Google Scholar
  47. A. Ozawa, et al., Phys. Rev. Lett. (in press)Google Scholar
  48. D.C. Yost, T.R. Schibli, J. Ye, Opt. Lett. 33, 1099 (2008)Google Scholar
  49. D.J. Jones, et al., Science 288, 635 (2000)Google Scholar
  50. A. Baltuška, et al., Nature 421, 611 (2003)Google Scholar
  51. G.G. Paulus, et al., Phys. Rev. Lett. 85, 253004 (2000)Google Scholar
  52. E. Goulielmakis, et al., Science 305, 1267 (2004)Google Scholar
  53. R. Kienberger, et al., Nature 427, 817 (2004)Google Scholar
  54. X. Calmet, H. Fritzsch, Phys. Lett. B 540, 173 (2002)Google Scholar
  55. M.T. Murphy, et al., Mon. Not. R. Astron. Soc. 380, 839 (2007)Google Scholar

Copyright information

© EDP Sciences and Springer 2009

Authors and Affiliations

  • Th. Udem
    • 1
  • R. Holzwarth
    • 1
  • Th. Hänsch
    • 1
  1. 1.Max-Planck-Institute für QuantenoptikGarchingGermany

Personalised recommendations